with torch.enable_grad():是什么意思
时间: 2024-09-11 12:06:14 浏览: 89
`with torch.enable_grad():` 是PyTorch中的一个语句块,它用于临时地启用或禁用张量上的自动微分(autograd)功能。当处在这个上下文中,如果你对一个`requires_grad=True`的张量执行操作,这些操作的结果将会记录梯度信息,以便后续可以进行反向传播(backpropagation)。如果不在`enable_grad()`块内,而是在`no_grad()`块中,那么即使张量的`requires_grad`属性设为了True,其操作也不会保存梯度信息。
例如:
```python
import torch
x = torch.ones(2,2,requires_grad=True)
with torch.no_grad():
z = x**2
print(z.requires_grad) # 输出:False,因为乘法在no_grad()环境下不记录梯度
with torch.enable_grad():
z = x**2
print(z.requires_grad) # 输出:True,因为乘方现在会记录梯度
```
在`@torch.enable_grad()`装饰器的函数中,无论是否在`no_grad()`块内,函数内部的操作都将具有梯度追踪功能。
相关问题
with torch.set_grad_enabled(enable_grad):
This is a context manager in PyTorch that enables or disables gradient computation.
When `enable_grad` is set to `True`, any computation performed within the context of this manager that involves tensors will have their gradients computed and stored for backpropagation during training. This is the default behavior of PyTorch.
When `enable_grad` is set to `False`, any computation performed within the context of this manager will not have their gradients computed and stored. This is useful when you want to perform inference on a trained model without updating its weights.
For example, consider the following code snippet:
```
with torch.set_grad_enabled(enable_grad=True):
# computation involving tensors with gradients enabled
with torch.set_grad_enabled(enable_grad=False):
# computation involving tensors with gradients disabled
```
In the first block, gradient computation is enabled for all tensors involved in the computation. In the second block, gradient computation is disabled for all tensors involved in the computation.
with torch.no_grad():作用域
with torch.no_grad():作用域是一个上下文管理器,用于临时禁用梯度计算。在这个作用域内,所有的张量操作都不会被记录梯度,也不会对requires_grad属性产生影响。这个作用域通常用于在不需要计算梯度的情况下进行推断或评估。在这个作用域内,可以使用其他方法来控制梯度计算的范围,比如方法1中的torch.enable_grad()或方法2中的装饰器@torch.enable_grad()。在方法1中,使用with torch.enable_grad()来控制requires_grad属性的作用域,可以将特定的计算包裹在梯度计算范围内。在方法2中,使用装饰器@torch.enable_grad()可以将整个函数的计算都包裹在梯度计算范围内。
阅读全文