Kruskal的python代码
时间: 2024-06-17 10:02:21 浏览: 124
Kruskal算法是一种用于求解最小生成树的贪心算法。下面是Kruskal算法的Python代码示例:
```python
# 定义边的类
class Edge:
def __init__(self, src, dest, weight):
self.src = src
self.dest = dest
self.weight = weight
# 定义并查集类
class UnionFind:
def __init__(self, vertices):
self.parent = {}
self.rank = {}
for v in vertices:
self.parent[v] = v
self.rank[v] = 0
def find(self, v):
if self.parent[v] != v:
self.parent[v] = self.find(self.parent[v])
return self.parent[v]
def union(self, v1, v2):
root1 = self.find(v1)
root2 = self.find(v2)
if root1 != root2:
if self.rank[root1] < self.rank[root2]:
self.parent[root1] = root2
elif self.rank[root1] > self.rank[root2]:
self.parent[root2] = root1
else:
self.parent[root2] = root1
self.rank[root1] += 1
# Kruskal算法实现
def kruskal(vertices, edges):
# 根据边的权重对边进行排序
edges.sort(key=lambda x: x.weight)
# 创建并查集对象
uf = UnionFind(vertices)
# 存储最小生成树的边
mst = []
for edge in edges:
src_root = uf.find(edge.src)
dest_root = uf.find(edge.dest)
# 如果边的两个顶点不在同一个连通分量中,则将边加入最小生成树
if src_root != dest_root:
mst.append(edge)
uf.union(src_root, dest_root)
return mst
# 测试代码
vertices = ['A', 'B', 'C', 'D', 'E']
edges = [
Edge('A', 'B', 4),
Edge('A', 'C', 1),
Edge('B', 'C', 3),
Edge('B', 'D', 2),
Edge('C', 'D', 4),
Edge('C', 'E', 5),
Edge('D', 'E', 1)
]
mst = kruskal(vertices, edges)
for edge in mst:
print(f"{edge.src} - {edge.dest}: {edge.weight}")
```
阅读全文