linear reduction

时间: 2023-11-20 15:14:11 浏览: 31
线性降维是一种降低数据维度的方法,它通过线性变换将高维数据投影到一个较低维度的子空间中。线性降维方法主要包括主成分分析(PCA)和多维缩放(MDS)。PCA通过寻找数据中的主要方差分布来确定一个新的坐标系,将原始数据映射到新的低维空间中。MDS则通过计算样本之间的距离矩阵来确定样本在低维空间中的位置。这些方法可以有效地减少数据的维度,提取出主要的特征,并保留数据之间的关系。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [机器学习之降维](https://blog.csdn.net/qq_16829085/article/details/105916024)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
相关问题

Traceback (most recent call last): File "D:\PyCharm\5hour(1.1)07linear_regtression\linear.py", line 95, in <module> loss=criterion(y_predicted,y_train) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\Python3.11.2\Lib\site-packages\torch\nn\modules\loss.py", line 616, in __init__ super().__init__(weight, size_average, reduce, reduction) File "D:\Python3.11.2\Lib\site-packages\torch\nn\modules\loss.py", line 30, in __init__ super().__init__(size_average, reduce, reduction) File "D:\Python3.11.2\Lib\site-packages\torch\nn\modules\loss.py", line 23, in __init__ self.reduction: str = _Reduction.legacy_get_string(size_average, reduce) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\Python3.11.2\Lib\site-packages\torch\nn\_reduction.py", line 35, in legacy_get_string if size_average and reduce: RuntimeError: Boolean value of Tensor with more than one value is ambiguous并且传入criterion 函数的两个参数的形状是相同的,请找出错误原因,并给出更改代码

这个错误通常是由于使用了过时的参数组合引起的。在 PyTorch 1.5.0 版本之前,损失函数的参数 `size_average` 和 `reduce` 分别用于控制是否对每个样本的损失进行平均以及是否对每个样本的损失进行求和。但是在 PyTorch 1.5.0 及之后的版本中,这两个参数已经被 `reduction` 参数所取代,`reduction` 参数可以取值为 `'none'`, `'mean'` 或 `'sum'`,分别表示不进行缩减、对所有样本的损失取平均、对所有样本的损失进行求和。 根据你的错误信息,很可能是在使用损失函数时,同时设置了 `size_average=True` 和 `reduce=True` 参数,这导致了错误的出现。建议将损失函数的参数 `size_average=True` 和 `reduce=True` 改为 `reduction='mean'`,代码如下: ``` criterion = nn.MSELoss(reduction='mean') loss = criterion(y_predicted, y_train) ``` 这样就可以避免上述错误的出现。

def __init__(self, input_dim): super(NeuralNet, self).__init__() # Define your neural network here # TODO: How to modify this model to achieve better performance? self.net = nn.Sequential( nn.Linear(input_dim, 64), #70是我调得最好的, 而且加层很容易过拟和 nn.ReLU(), nn.Linear(64, 1) ) # Mean squared error loss self.criterion = nn.MSELoss(reduction='mean')

To modify the `NeuralNet` model to achieve better performance, you can consider experimenting with the following modifications: 1. Increase the number of hidden layers: Adding more hidden layers can increase the model's capacity to learn complex patterns in the data. You can add additional `nn.Linear` layers with appropriate activation functions between them. 2. Adjust the number of hidden units in each layer: The number of hidden units determines the complexity and representational power of the neural network. Increasing the number of hidden units can potentially improve the model's ability to capture intricate relationships in the data. You can modify the `in_features` argument of `nn.Linear` to change the number of hidden units in a particular layer. 3. Try different activation functions: The ReLU activation function (`nn.ReLU`) is commonly used in neural networks, but experimenting with other activation functions such as `nn.LeakyReLU` or `nn.ELU` might yield better results for your specific task. 4. Implement regularization techniques: Regularization techniques like dropout or weight decay can help prevent overfitting and improve generalization. You can add dropout layers (`nn.Dropout`) after each hidden layer or apply weight decay using optimizer-specific parameters. 5. Adjust the learning rate and optimizer: The learning rate and choice of optimizer can significantly impact the model's convergence and performance. You can experiment with different learning rates and optimizers (e.g., Adam, RMSprop, SGD) to find the combination that works best for your specific task. Remember to assess the impact of these modifications on both training and validation/test performance to ensure you're achieving better results without overfitting or sacrificing generalization. It may require some trial and error to find the optimal configuration for your specific problem.

相关推荐

PCX1 = 1.5482 $Shape factor Cfx for longitudinal force PDX1 = 1.1632 $Longitudinal friction Mux at Fznom PDX2 = -0.11154 $Variation of friction Mux with load PDX3 = 0.94173 $Variation of friction Mux with camber squared PEX1 = 0.27 $Longitudinal curvature Efx at Fznom PEX2 = 0.011693 $Variation of curvature Efx with load PEX3 = 0.053303 $Variation of curvature Efx with load squared PEX4 = 0.59223 $Factor in curvature Efx while driving PKX1 = 32.9102 $Longitudinal slip stiffness Kfx/Fz at Fznom PKX2 = 12.7911 $Variation of slip stiffness Kfx/Fz with load PKX3 = -0.11254 $Exponent in slip stiffness Kfx/Fz with load PHX1 = -0.0017527 $Horizontal shift Shx at Fznom PHX2 = 0.00068824 $Variation of shift Shx with load PVX1 = 0.068079 $Vertical shift Svx/Fz at Fznom PVX2 = 0.0023429 $Variation of shift Svx/Fz with load PPX1 = -0.8733 $linear influence of inflation pressure on longitudinal slip stiffness PPX2 = 0.7035 $quadratic influence of inflation pressure on longitudinal slip stiffness PPX3 = -0.0080216 $linear influence of inflation pressure on peak longitudinal friction PPX4 = -0.47776 $quadratic influence of inflation pressure on peak longitudinal friction RBX1 = 18.3369 $Slope factor for combined slip Fx reduction RBX2 = 18.2559 $Variation of slope Fx reduction with kappa RBX3 = 607.8133 $Influence of camber on stiffness for Fx combined RCX1 = 0.96372 $Shape factor for combined slip Fx reduction REX1 = -1.2699 $Curvature factor of combined Fx REX2 = -0.14323 $Curvature factor of combined Fx with load RHX1 = 0.0037359 $Shift factor for combined slip Fx reduction帮我做成表格

C:\Users\adminstor\anaconda3\envs\python39\python.exe D:\daima\KalmanNet_TSP-main\main_lor_DT_NLobs.py Pipeline Start Current Time = 07.24.23_12:19:44 Using GPU 1/r2 [dB]: tensor(30.) 1/q2 [dB]: tensor(30.) Start Data Gen Data Load data_lor_v0_rq3030_T20.pt no chopping trainset size: torch.Size([1000, 3, 20]) cvset size: torch.Size([100, 3, 20]) testset size: torch.Size([200, 3, 20]) Evaluate EKF full Extended Kalman Filter - MSE LOSS: tensor(-26.4659) [dB] Extended Kalman Filter - STD: tensor(1.6740) [dB] Inference Time: 37.115127086639404 KalmanNet start Number of trainable parameters for KNet: 19938 Composition Loss: True Traceback (most recent call last): File "D:\daima\KalmanNet_TSP-main\main_lor_DT_NLobs.py", line 146, in <module> [MSE_cv_linear_epoch, MSE_cv_dB_epoch, MSE_train_linear_epoch, MSE_train_dB_epoch] = KalmanNet_Pipeline.NNTrain(sys_model, cv_input, cv_target, train_input, train_target, path_results) File "D:\daima\KalmanNet_TSP-main\Pipelines\Pipeline_EKF.py", line 150, in NNTrain MSE_trainbatch_linear_LOSS = self.alpha * self.loss_fn(x_out_training_batch, train_target_batch)+(1-self.alpha)*self.loss_fn(y_hat, y_training_batch) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\loss.py", line 520, in forward return F.mse_loss(input, target, reduction=self.reduction) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\functional.py", line 3112, in mse_loss return torch._C._nn.mse_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction)) RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!

import torch import torch.nn as nn import numpy as np import torch.nn.functional as F import matplotlib.pyplot as plt from torch.autograd import Variable x=torch.tensor(np.array([[i] for i in range(10)]),dtype=torch.float32) y=torch.tensor(np.array([[i**2] for i in range(10)]),dtype=torch.float32) #print(x,y) x,y=(Variable(x),Variable(y))#将tensor包装一个可求导的变量 print(type(x)) net=torch.nn.Sequential( nn.Linear(1,10,dtype=torch.float32),#隐藏层线性输出 torch.nn.ReLU(),#激活函数 nn.Linear(10,20,dtype=torch.float32),#隐藏层线性输出 torch.nn.ReLU(),#激活函数 nn.Linear(20,1,dtype=torch.float32),#输出层线性输出 ) optimizer=torch.optim.SGD(net.parameters(),lr=0.05)#优化器(梯度下降) loss_func=torch.nn.MSELoss()#最小均方差 #神经网络训练过程 plt.ion() plt.show()#动态学习过程展示 for t in range(2000): prediction=net(x),#把数据输入神经网络,输出预测值 loss=loss_func(prediction,y)#计算二者误差,注意这两个数的顺序 optimizer.zero_grad()#清空上一步的更新参数值 loss.backward()#误差反向传播,计算新的更新参数值 optimizer.step()#将计算得到的更新值赋给net.parameters()D:\Anaconda\python.exe D:\py\text.py <class 'torch.Tensor'> Traceback (most recent call last): File "D:\py\text.py", line 28, in <module> loss=loss_func(prediction,y)#计算二者误差,注意这两个数的顺序 File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(*input, **kwargs) File "D:\Anaconda\lib\site-packages\torch\nn\modules\loss.py", line 536, in forward return F.mse_loss(input, target, reduction=self.reduction) File "D:\Anaconda\lib\site-packages\torch\nn\functional.py", line 3281, in mse_loss if not (target.size() == input.size()): AttributeError: 'tuple' object has no attribute 'size'

class MLP(nn.Module): def __init__( self, input_size: int, output_size: int, n_hidden: int, classes: int, dropout: float, normalize_before: bool = True ): super(MLP, self).__init__() self.input_size = input_size self.dropout = dropout self.n_hidden = n_hidden self.classes = classes self.output_size = output_size self.normalize_before = normalize_before self.model = nn.Sequential( nn.Linear(self.input_size, n_hidden), nn.Dropout(self.dropout), nn.ReLU(), nn.Linear(n_hidden, self.output_size), nn.Dropout(self.dropout), nn.ReLU(), ) self.after_norm = torch.nn.LayerNorm(self.input_size, eps=1e-5) self.fc = nn.Sequential( nn.Dropout(self.dropout), nn.Linear(self.input_size, self.classes) ) self.output_layer = nn.Linear(self.output_size, self.classes) def forward(self, x): self.device = torch.device('cuda') # x = self.model(x) if self.normalize_before: x = self.after_norm(x) batch_size, length, dimensions = x.size(0), x.size(1), x.size(2) output = self.model(x) return output.mean(dim=1) class LabelSmoothingLoss(nn.Module): def __init__(self, size: int, smoothing: float, ): super(LabelSmoothingLoss, self).__init__() self.size = size self.criterion = nn.KLDivLoss(reduction="none") self.confidence = 1.0 - smoothing self.smoothing = smoothing def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: batch_size = x.size(0) if self.smoothing == None: return nn.CrossEntropyLoss()(x, target.view(-1)) true_dist = torch.zeros_like(x) true_dist.fill_(self.smoothing / (self.size - 1)) true_dist.scatter_(1, target.view(-1).unsqueeze(1), self.confidence) kl = self.criterion(torch.log_softmax(x, dim=1), true_dist) return kl.sum() / batch_size

import torch import torch.nn as nn import numpy as np import torch.nn.functional as F import matplotlib.pyplot as plt from torch.autograd import Variable x=torch.tensor(np.array([[i] for i in range(10)]),dtype=torch.float32) y=torch.tensor(np.array([[i**2] for i in range(10)]),dtype=torch.float32) #print(x,y) x,y=(Variable(x),Variable(y))#将tensor包装一个可求导的变量 net=torch.nn.Sequential( nn.Linear(1,10,dtype=torch.float32),#隐藏层线性输出 torch.nn.ReLU(),#激活函数 nn.Linear(10,20,dtype=torch.float32),#隐藏层线性输出 torch.nn.ReLU(),#激活函数 nn.Linear(20,1,dtype=torch.float32),#输出层线性输出 ) optimizer=torch.optim.SGD(net.parameters(),lr=0.05)#优化器(梯度下降) loss_func=torch.nn.MSELoss()#最小均方差 #神经网络训练过程 plt.ion() plt.show()#动态学习过程展示 for t in range(2000): prediction=torch.tensor(net(x)),#把数据输入神经网络,输出预测值 loss=loss_func(prediction, y)#计算二者误差,注意这两个数的顺序 optimizer.zero_grad()#清空上一步的更新参数值 loss.backward()#误差反向传播,计算新的更新参数值 optimizer.step()#将计算得到的更新值赋给net.parameters()D:\Anaconda\python.exe D:\py\text.py D:\py\text.py:26: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). prediction=torch.tensor(net(x)),#把数据输入神经网络,输出预测值 Traceback (most recent call last): File "D:\py\text.py", line 27, in <module> loss=loss_func(prediction, y)#计算二者误差,注意这两个数的顺序 File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(*input, **kwargs) File "D:\Anaconda\lib\site-packages\torch\nn\modules\loss.py", line 536, in forward return F.mse_loss(input, target, reduction=self.reduction) File "D:\Anaconda\lib\site-packages\torch\nn\functional.py", line 3281, in mse_loss if not (target.size() == input.size()): AttributeError: 'tuple' object has no attribute 'size'

import numpy import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn from torch.utils.data import DataLoader, Dataset import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value print(scalar) dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') train_X = torch.from_numpy(train_X) train_Y = torch.from_numpy(train_Y) test_X = torch.from_numpy(test_X) class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): out, h = self.rnn(x) out = self.linear(out[0]) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()请适当修改代码,并写出预测值和真实值的代码

最新推荐

recommend-type

MIL-HDBK-217F-Notice2.pdf

4. A reduction in the number of environmental factors( F)from 27 to 14 5. A revised fallure rate model for Network Resistors 6. Revised models for TWTs and Klystrons based on data supplied by the ...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

已知n个人(以编号0,1,2,3...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m+1的那个人又出列(每次报数值加1);依此规律重复下去,直到圆桌周围的人全部出列。用递归方法解决

这个问题可以使用递归方法解决。下面是一个思路: 1. 定义一个函数,接收三个参数:n、m、i,表示还剩下n个人,每次数到m时出列,当前报数的人是i; 2. 如果n=1,返回i,即最后留下的那个人的编号; 3. 否则,计算出下一个出列的人的编号j,通过递归调用函数解决n-1个人的问题,其结果为k; 4. 如果k < j,即当前i之后出列的人的编号为k,需要将k转换为在i之前出列的编号,返回值为 k+(n-1); 5. 如果k>=j,即当前i之后出列的人的编号为k,返回值为 k-(j-1); 下面是对应的Python代码: ```python def josephus(n, m, i):
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。