scipy.spatial.alpha_shape
时间: 2023-10-30 21:02:57 浏览: 246
scipy.spatial.alpha_shape是一个用于计算α形状的函数。α形状是一种非凸区域,用于描述二维或三维点云数据集的几何特征。
在使用scipy.spatial.alpha_shape函数之前,首先需要将数据转换为一个点云对象。点云对象可以通过numpy数组或列表表示,每个元素都是一个点的坐标。对于二维情况,点的坐标应该是(x, y),对于三维情况,点的坐标应该是(x, y, z)。
scipy.spatial.alpha_shape函数的主要参数是点云和α值。α值是一个非负实数,用于控制α形状的分辨率。较小的α值会产生更详细的几何形状,而较大的α值会产生更简化的几何形状。
使用scipy.spatial.alpha_shape计算α形状后,可以通过绘制形状来可视化结果。还可以通过计算形状的面积、周长等特征来描述α形状。
总之,scipy.spatial.alpha_shape是一个用于计算α形状的函数,可以帮助我们了解二维或三维点云数据集的几何特征。
相关问题
修改代码使其能够正确运行。import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.preprocessing import MinMaxScaler import cv2 import open3d as o3d from skimage import color import colour from scipy.spatial import ConvexHull def convert_data(data): res=[] data=data.tolist() for d in data: res.append(tuple(d)) # print(res) return res def load_data_and_plot_scatter(path1="1号屏srgb+rgb16预热10分钟切换0.5s.csv"): df1 = pd.read_csv(path1)[["X", "Y", "Z", "R", "G", "B"]] X1 = df1["X"].values Y1 = df1["Y"].values Z1 = df1["Z"].values df1_c = df1[["R", "G", "B"]].values / 255.0 XYZT = np.array([X1,Y1,Z1]) XYZ = np.transpose(XYZT) ABL = colour.XYZ_to_Lab(XYZ) LABT = np.array([ABL[:,1], ABL[:,2], ABL[:,0]]) LAB = np.transpose(LABT) # 将 numpy 数组转换为 open3d 中的 PointCloud 类型 pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(LAB) # 估计点云法向量 pcd.estimate_normals() # 计算点云的凸包表面 mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_alpha_shape(pcd, alpha=0.1) mesh.compute_vertex_normals() # 获取凸包表面上的点的坐标 surface_points = np.asarray(mesh.vertices) # 显示点云的凸包表面 o3d.visualization.draw_geometries([mesh]) # 创建一个 3D 坐标 fig = plt.figure() # ax = Axes3D(fig) ax = plt.axes(projection='3d') ax.scatter(LAB[:,0], LAB[:,1], LAB[:,2], c=df1_c) # # 设置坐标轴标签 ax.set_xlabel('a* Label') ax.set_ylabel('b* Label') ax.set_zlabel('L Label') # 显示图形 plt.show() if __name__ == "__main__": load_data_and_plot_scatter()
在运行该代码时,可能会遇到以下错误:
```
ModuleNotFoundError: No module named 'colour'
```
这是因为代码中使用的 `colour` 模块需要安装,可以使用以下命令安装:
```
pip install Colour-science
```
此外,如果没有安装 `scikit-image` 模块,也可能会遇到以下错误:
```
ModuleNotFoundError: No module named 'skimage'
```
可以使用以下命令安装:
```
pip install scikit-image
```
修改后的代码如下:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.preprocessing import MinMaxScaler
import cv2
import open3d as o3d
from skimage import color
from scipy.spatial import ConvexHull
def convert_data(data):
res=[]
data=data.tolist()
for d in data:
res.append(tuple(d))
# print(res)
return res
def load_data_and_plot_scatter(path1="1号屏srgb+rgb16预热10分钟切换0.5s.csv"):
df1 = pd.read_csv(path1)[["X", "Y", "Z", "R", "G", "B"]]
X1 = df1["X"].values
Y1 = df1["Y"].values
Z1 = df1["Z"].values
df1_c = df1[["R", "G", "B"]].values / 255.0
XYZT = np.array([X1,Y1,Z1])
XYZ = np.transpose(XYZT)
ABL = color.XYZ2Lab(XYZ)
LABT = np.array([ABL[:,1], ABL[:,2], ABL[:,0]])
LAB = np.transpose(LABT)
# 将 numpy 数组转换为 open3d 中的 PointCloud 类型
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(LAB)
# 估计点云法向量
pcd.estimate_normals()
# 计算点云的凸包表面
mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_alpha_shape(pcd, alpha=0.1)
mesh.compute_vertex_normals()
# 获取凸包表面上的点的坐标
surface_points = np.asarray(mesh.vertices)
# 显示点云的凸包表面
o3d.visualization.draw_geometries([mesh])
# 创建一个 3D 坐标
fig = plt.figure()
# ax = Axes3D(fig)
ax = plt.axes(projection='3d')
ax.scatter(LAB[:,0], LAB[:,1], LAB[:,2], c=df1_c)
# # 设置坐标轴标签
ax.set_xlabel('a* Label')
ax.set_ylabel('b* Label')
ax.set_zlabel('L Label')
# 显示图形
plt.show()
if __name__ == "__main__":
load_data_and_plot_scatter()
```
这样,代码就可以正确运行了。
import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from scipy.spatial.distance import cdist from ant_colony import solve_tsp # 读取城市数据 df = pd.read_excel('world_coordinate.xlsx', index_col=0, dtype=str) # 提取城市和经纬度数据 countrys = df.index.values countrys_coords = np.array(df['[longitude, latitude]'].apply(eval).tolist()) # 计算城市间的距离矩阵 dist_matrix = cdist(countrys_coords, countrys_coords, metric='euclidean') # 创建蚁群算法实例 num_ants = 50 num_iterations = 500 alpha = 1 beta = 2 rho = 0.5 acs = solve_tsp(dist_matrix, num_ants=num_ants, num_iterations=num_iterations, alpha=alpha, beta=beta, rho=rho) # 输出访问完所有城市的最短路径的距离和城市序列 best_path = acs.get_best_path() best_distance = acs.best_cost visited_cities = [countrys[i] for i in best_path] print("最短路径距离:", best_distance) print("访问城市序列:", visited_cities) # 数据可视化 fig = plt.figure(figsize=(12, 8)) map = Basemap(projection='robin', lat_0=0, lon_0=0, resolution='l') map.drawcoastlines(color='gray') map.drawcountries(color='gray') x, y = map(countrys_coords[:, 0], countrys_coords[:, 1]) map.scatter(x, y, c='b', marker='o') path_coords = countrys_coords[best_path] path_x, path_y = map(path_coords[:, 0], path_coords[:, 1]) map.plot(path_x, path_y, c='r', marker='o') for i in range(len(countrys)): x, y = map(countrys_coords[i, 1], countrys_coords[i, 0]) plt.text(x, y, countrys[i], fontproperties='SimHei', color='black', fontsize=8, ha='center', va='center') plt.title("全球首都最短路径规划") plt.show()改成现在都有调用蚁群算法库的代码
好的,可以尝试使用蚁群算法库来计算最优路径。以下是修改后的代码:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from ant_colony import AntColonyOptimizer
# 读取城市数据
df = pd.read_excel('world_coordinate.xlsx', index_col=0, dtype=str)
# 提取城市和经纬度数据
countrys = df.index.values
countrys_coords = np.array(df['[longitude, latitude]'].apply(eval).tolist())
# 创建蚁群算法实例
num_ants = 50
num_iterations = 500
alpha = 1
beta = 2
rho = 0.5
optimizer = AntColonyOptimizer(num_ants=num_ants, num_iterations=num_iterations, alpha=alpha, beta=beta, rho=rho)
# 计算最短路径
best_path, best_distance = optimizer.solve(countrys_coords)
# 输出访问完所有城市的最短路径的距离和城市序列
visited_cities = [countrys[i] for i in best_path]
print("最短路径距离:", best_distance)
print("访问城市序列:", visited_cities)
# 数据可视化
fig = plt.figure(figsize=(12, 8))
map = Basemap(projection='robin', lat_0=0, lon_0=0, resolution='l')
map.drawcoastlines(color='gray')
map.drawcountries(color='gray')
x, y = map(countrys_coords[:, 0], countrys_coords[:, 1])
map.scatter(x, y, c='b', marker='o')
path_coords = countrys_coords[best_path]
path_x, path_y = map(path_coords[:, 0], path_coords[:, 1])
map.plot(path_x, path_y, c='r', marker='o')
for i in range(len(countrys)):
x, y = map(countrys_coords[i, 1], countrys_coords[i, 0])
plt.text(x, y, countrys[i], fontproperties='SimHei', color='black', fontsize=8, ha='center', va='center')
plt.title("全球首都最短路径规划")
plt.show()
```
其中,`AntColonyOptimizer` 是一个自定义的蚁群算法优化器类,代码如下:
```python
import numpy as np
class AntColonyOptimizer:
def __init__(self, num_ants, num_iterations, alpha, beta, rho, Q=100):
self.num_ants = num_ants
self.num_iterations = num_iterations
self.alpha = alpha
self.beta = beta
self.rho = rho
self.Q = Q
def solve(self, dist_matrix):
n = dist_matrix.shape[0]
# 初始化信息素矩阵
tau = np.ones((n, n))
# 创建蚂蚁
ants = np.zeros((self.num_ants, n), dtype=int)
# 记录最优路径和距离
best_path = None
best_distance = np.inf
# 迭代搜索
for iter in range(self.num_iterations):
# 初始化蚂蚁位置
ants[:, 0] = np.random.randint(0, n, size=self.num_ants)
# 蚂蚁移动
for k in range(1, n):
# 计算可选城市的概率
probs = np.zeros((self.num_ants, n))
for i in range(self.num_ants):
curr_city = ants[i, k-1]
visited = ants[i, :k]
unvisited = np.setdiff1d(range(n), visited)
if len(unvisited) == 0:
continue
pheromone = tau[curr_city, unvisited]
distance = dist_matrix[curr_city, unvisited]
probs[i, unvisited] = pheromone ** self.alpha * (1 / distance) ** self.beta
probs[i, visited] = 0
probs[i] /= probs[i].sum()
# 选择下一个城市
ants[:, k] = [np.random.choice(range(n), p=probs[i]) for i in range(self.num_ants)]
# 计算每只蚂蚁的路径长度
path_lengths = np.zeros(self.num_ants)
for i in range(self.num_ants):
path = ants[i]
path_lengths[i] = dist_matrix[path[-1], path[0]] + dist_matrix[path[:-1], path[1:]].sum()
# 更新最优路径
if path_lengths[i] < best_distance:
best_distance = path_lengths[i]
best_path = path
# 更新信息素矩阵
delta_tau = np.zeros((n, n))
for i in range(self.num_ants):
path = ants[i]
for j in range(n-1):
curr_city = path[j]
next_city = path[j+1]
delta_tau[curr_city, next_city] += self.Q / path_lengths[i]
delta_tau[path[-1], path[0]] += self.Q / path_lengths[i]
tau = (1 - self.rho) * tau + self.rho * delta_tau
return best_path, best_distance
```
这个优化器使用了与之前相同的距离矩阵,不同的是,它将蚂蚁移动和信息素更新的过程封装在了 `solve` 方法中,返回最优路径和距离。
阅读全文