#include<iostream> #include <opencv2/core.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp> using namespace cv; using namespace std; int main() { Mat img = imread("C:\\Users\\Lenovo\\Pictures\\Saved Pictures\\QQ图片20230712174241.jpg", 0); Mat dst1, dst2; Sobel(img, dst1, CV_16S, 1, 0); //第五个参数为0,表示y方向不进行卷积运算 Sobel(img, dst2, CV_16S, 0, 1); //第四个参数为0,表示x方向不进行卷积运算 convertScaleAbs(dst1, dst1); convertScaleAbs(dst2, dst2); namedWindow("1", WINDOW_NORMAL); namedWindow("2", WINDOW_NORMAL); imshow("1", dst1); imshow("2", dst2); Mat dst; dst = Mat(dst1.size(), dst1.type()); int cols = dst1.cols, rows = dst2.rows; for (int i = 0; i < cols; i++) { for (int j = 0; j < rows; j++) { int x = dst.at<uchar>(j, i); int y = dst.at<uchar>(j, i); int xy = x + y; dst.at<uchar>(j, i) = saturate_cast<uchar>(xy); } } namedWindow("3", WINDOW_NORMAL); imshow("3", dst); waitKey(0); }
时间: 2024-04-17 17:29:07 浏览: 128
这段代码是使用OpenCV库进行图像处理的示例代码。它使用Sobel算子对输入的灰度图像进行边缘检测,并将水平和垂直方向的边缘图像进行叠加,最后显示处理后的图像。
首先,它包含了必要的头文件,并使用了cv和std命名空间。
然后,在主函数中,它读取了一张灰度图像作为输入。你可以根据你的需要修改文件路径。
接下来,它定义了两个Mat对象dst1和dst2,分别用于存储水平和垂直方向的边缘图像。
然后,它调用了Sobel函数两次,分别计算水平和垂直方向的边缘图像。Sobel函数的第三个参数是输出图像的数据类型,CV_16S表示输出结果为16位有符号整数。第四个和第五个参数分别表示在x方向和y方向进行卷积运算。
接下来,它使用convertScaleAbs函数将dst1和dst2转换为8位无符号整数类型的图像。
然后,它创建了三个窗口用于显示结果,并使用imshow函数显示图像。
然后,它创建了一个与dst1相同大小和类型的Mat对象dst。
接下来,它使用两个嵌套的for循环遍历dst1和dst2的每个像素,并将对应位置的像素值相加,并将结果存储在dst中。
最后,它使用imshow函数显示叠加后的图像,并使用waitKey函数等待用户按下任意键退出程序。
请注意,这只是一个简单的示例代码,你可以根据你的需求进行修改和扩展。
相关问题
逐句解释以下代码#include <opencv2/opencv.hpp> #include <iostream> using namespace std; using namespace cv; int main() { Mat img = imread("88.jpg", IMREAD_GRAYSCALE); // 读取灰度图像 Mat dst; medianBlur(img, dst, 3); // 中值滤波器,核大小为 3x3 imshow("Original", img); imshow("Processed", dst); waitKey(0); return 0; }
这段代码是一个基本的使用 OpenCV 库进行图像处理的程序。下面逐句解释每一行代码的含义:
```
#include <opencv2/opencv.hpp>
```
该语句是用来包含 OpenCV 库的头文件,以便在程序中使用 OpenCV 库的函数和类。
```
#include <iostream>
```
该语句是用来包含标准输入输出流的头文件,以便在程序中使用 cout、cin 等函数。
```
using namespace std;
using namespace cv;
```
该语句是用来声明命名空间,以便在程序中直接使用 std 和 cv 命名空间中的函数和类,避免每次都需要写命名空间前缀。
```
int main() {
Mat img = imread("88.jpg", IMREAD_GRAYSCALE);
```
该语句是用来读取名为 "88.jpg" 的灰度图像,将其存储在 Mat 类型的变量 img 中,IMREAD_GRAYSCALE 是读取图像的模式,表示读取灰度图像。
```
Mat dst;
medianBlur(img, dst, 3);
```
该语句是用中值滤波器对读取的灰度图像进行处理,将处理后的图像存储在 Mat 类型的变量 dst 中,核的大小为 3x3。
```
imshow("Original", img);
imshow("Processed", dst);
waitKey(0);
```
该语句是用来显示原始图像和处理后的图像,其中 "Original" 和 "Processed" 是窗口的标题,waitKey(0) 表示程序等待用户按下键盘任意键后才会结束。
```
return 0;
}
```
该语句是返回程序运行的状态,0 表示程序正常结束。
#include <iostream> #include <opencv2/imgcodecs.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/videoio.hpp> #include <opencv2/highgui.hpp> #include <opencv2/video.hpp> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui_c.h> using namespace cv; using namespace std; int main(int argc, char** argv) { VideoCapture capture("D:/dvp/sample/dataset/traffic.mp4"); if (!capture.isOpened()) { //error in opening the video input cerr << "Unable to open file!" << endl; return 0; } Mat frame, roi, hsv_roi, mask; // take first frame of the video capture >> frame; // setup initial location of window Rect track_window(300, 200, 100, 50); // simply hardcoded the values // set up the ROI for tracking roi = frame(track_window); cvtColor(roi, hsv_roi, COLOR_BGR2HSV); inRange(hsv_roi, Scalar(0, 60, 32), Scalar(180, 255, 255), mask); float range_[] = { 0, 180 }; const float* range[] = { range_ }; Mat roi_hist; int histSize[] = { 180 }; int channels[] = { 0 }; calcHist(&hsv_roi, 1, channels, mask, roi_hist, 1, histSize, range); normalize(roi_hist, roi_hist, 0, 255, NORM_MINMAX); // Setup the termination criteria, either 10 iteration or move by atleast 1 pt TermCriteria term_crit(TermCriteria::EPS | TermCriteria::COUNT, 10, 1); while (true) { Mat hsv, dst; capture >> frame; if (frame.empty()) break; cvtColor(frame, hsv, COLOR_BGR2HSV); calcBackProject(&hsv, 1, channels, roi_hist, dst, range); // apply meanshift to get the new location meanShift(dst, track_window, term_crit); // Draw it on image rectangle(frame, track_window, 255, 2); imshow("img2", frame); setMouseCallback("img2", onMouse, 0); int keyboard = waitKey(30); if (keyboard == 'q' || keyboard == 27) break; } }帮我更改此段代码,使其能够通过gui使用鼠标来框选指定区域
以下是修改后的代码,可以通过GUI使用鼠标来框选指定区域:
```
#include <iostream>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/video.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui_c.h>
using namespace cv;
using namespace std;
Rect box; //定义一个矩形框,用于记录鼠标选择的区域
bool drawing_box = false; //标记是否正在通过鼠标绘制矩形框
void draw_box(Mat& img, Rect box)
{
//绘制矩形框
rectangle(img, box.tl(), box.br(), Scalar(0, 0, 255), 2);
}
void onMouse(int event, int x, int y, int flags, void* param)
{
Mat& image = *(Mat*)param;
switch (event)
{
case EVENT_MOUSEMOVE:
if (drawing_box)
{
//更新矩形框位置
box.width = x - box.x;
box.height = y - box.y;
}
break;
case EVENT_LBUTTONDOWN:
//开始绘制矩形框
drawing_box = true;
box = Rect(x, y, 0, 0);
break;
case EVENT_LBUTTONUP:
//结束绘制矩形框
drawing_box = false;
if (box.width < 0)
{
box.x += box.width;
box.width *= -1;
}
if (box.height < 0)
{
box.y += box.height;
box.height *= -1;
}
draw_box(image, box);
break;
}
}
int main(int argc, char** argv)
{
VideoCapture capture("D:/dvp/sample/dataset/traffic.mp4");
if (!capture.isOpened()) {
//error in opening the video input
cerr << "Unable to open file!" << endl;
return 0;
}
Mat frame, roi, hsv_roi, mask;
// take first frame of the video
capture >> frame;
namedWindow("img2");
setMouseCallback("img2", onMouse, &frame);
while (true) {
capture >> frame;
if (frame.empty()) break;
if (!box.empty()) {
// set up the ROI for tracking
roi = frame(box);
cvtColor(roi, hsv_roi, COLOR_BGR2HSV);
inRange(hsv_roi, Scalar(0, 60, 32), Scalar(180, 255, 255), mask);
float range_[] = { 0, 180 };
const float* range[] = { range_ };
Mat roi_hist;
int histSize[] = { 180 };
int channels[] = { 0 };
calcHist(&hsv_roi, 1, channels, mask, roi_hist, 1, histSize, range);
normalize(roi_hist, roi_hist, 0, 255, NORM_MINMAX);
// Setup the termination criteria, either 10 iteration or move by atleast 1 pt
TermCriteria term_crit(TermCriteria::EPS | TermCriteria::COUNT, 10, 1);
Mat hsv, dst;
cvtColor(frame, hsv, COLOR_BGR2HSV);
calcBackProject(&hsv, 1, channels, roi_hist, dst, range);
// apply meanshift to get the new location
meanShift(dst, box, term_crit);
// Draw it on image
rectangle(frame, box, 255, 2);
}
imshow("img2", frame);
int keyboard = waitKey(30);
if (keyboard == 'q' || keyboard == 27) break;
}
return 0;
}
```
在主函数中,我们添加了一个名为“img2”的窗口,并将其用作鼠标事件的回调函数。在主循环中,我们检查矩形框是否已经被绘制,如果是,则设置ROI并进行跟踪。最后,在每个循环迭代中,我们都显示图像,并等待用户按下“q”或“ESC”键退出程序。
阅读全文