snownlp算法原理
时间: 2024-05-07 15:13:19 浏览: 169
基于SnowNLP的豆瓣评论情感分析及词云分析
3星 · 编辑精心推荐
snownlp是一个基于Python的中文自然语言处理工具包,它提供了一系列文本处理功能,包括情感分析、文本分类、关键词提取等。其算法原理主要包括以下几个方面:
1. 中文分词:snownlp使用了隐马尔可夫模型(Hidden Markov Model,HMM)来进行中文分词。HMM是一种统计模型,通过观察到的状态序列来推断隐藏的状态序列。
2. 词性标注:snownlp使用了隐马尔可夫模型和Viterbi算法来进行中文词性标注。Viterbi算法是一种动态规划算法,用于在隐马尔可夫模型中找到最可能的隐藏状态序列。
3. 情感分析:snownlp使用了朴素贝叶斯分类器来进行情感分析。朴素贝叶斯分类器是一种基于概率统计的分类方法,通过计算文本中各个特征的条件概率来判断文本的情感倾向。
4. 文本分类:snownlp使用了朴素贝叶斯分类器和支持向量机(Support Vector Machine,SVM)来进行文本分类。SVM是一种二分类模型,通过构建超平面来将不同类别的样本分开。
5. 关键词提取:snownlp使用了TF-IDF(Term Frequency-Inverse Document Frequency)算法来进行关键词提取。TF-IDF是一种用于评估一个词对于一个文档集或语料库的重要程度的统计方法。
阅读全文