差分进化算法改进python
时间: 2024-01-27 10:15:27 浏览: 100
差分进化算法(DE)是一种优化算法,用于解决函数优化问题。它通过模拟生物进化的过程,通过变异和交叉操作来搜索最优解。在Python中,可以使用numpy库来实现差分进化算法。
以下是一个简单的差分进化算法的Python实现示例:
```python
import numpy as np
def differential_evolution(fitness_func, bounds, pop_size=50, F=0.8, CR=0.9, max_iter=100):
# 初始化种群
pop = np.random.uniform(bounds[:, 0], bounds[:, 1], (pop_size, len(bounds)))
best_solution = None
best_fitness = float('inf')
for i in range(max_iter):
for j in range(pop_size):
# 选择三个不同的个体作为变异向量
candidates = [idx for idx in range(pop_size) if idx != j]
a, b, c = np.random.choice(candidates, 3, replace=False)
# 变异操作
mutant = pop[a] + F * (pop[b] - pop[c])
# 交叉操作
trial = np.copy(pop[j])
for k in range(len(bounds)):
if np.random.rand() < CR:
trial[k] = mutant[k]
# 选择操作
trial_fitness = fitness_func(trial)
if trial_fitness < best_fitness:
best_solution = trial
best_fitness = trial_fitness
if trial_fitness <= fitness_func(pop[j]):
pop[j] = trial
return best_solution, best_fitness
# 示例适应度函数
def fitness_func(x):
return np.sum(x**2)
# 示例边界
bounds = np.array([[-5, 5], [-5, 5]])
# 运行差分进化算法
best_solution, best_fitness = differential_evolution(fitness_func, bounds)
print("Best solution:", best_solution)
print("Best fitness:", best_fitness)
```
这个示例中,我们定义了一个适应度函数`fitness_func`,它计算了解的适应度值。然后,我们定义了变量的边界`bounds`,用于限制解的取值范围。最后,我们调用`differential_evolution`函数来运行差分进化算法,并输出最佳解和最佳适应度值。
阅读全文