差分进化算法Python
时间: 2023-11-05 14:22:24 浏览: 142
Untitled_差分进化蒜算法_Untitled_
差分进化算法(Differential Evolution)是一种常用的全局优化算法,用于求解复杂的非线性优化问题。以下是一个使用Python实现差分进化算法的简单示例:
```python
import numpy as np
def differential_evolution(objective_func, bounds, population_size=50, max_generations=100, F=0.5, CR=0.7):
# 初始化种群
population = np.random.uniform(bounds[0], bounds[1], (population_size, len(bounds)))
best_solution = None
for generation in range(max_generations):
for i in range(population_size):
# 选择3个不同的个体作为父代
candidates = [j for j in range(population_size) if j != i]
a, b, c = np.random.choice(candidates, 3, replace=False)
# 生成变异向量
mutant = population[a] + F * (population[b] - population[c])
# 交叉操作
crossover = np.random.rand(len(bounds)) < CR
trial = np.where(crossover, mutant, population[i])
# 评估新解
if objective_func(trial) < objective_func(population[i]):
population[i] = trial
# 更新最优解
if best_solution is None or objective_func(population[i]) < objective_func(best_solution):
best_solution = population[i]
return best_solution
# 示例目标函数,求解最小值的一维函数
def objective(x):
return x**2 + 2*x + 1
bounds = [(-10, 10)] # 自变量范围
best_solution = differential_evolution(objective, bounds)
print("最优解:", best_solution)
print("最优值:", objective(best_solution))
```
以上代码实现了一个简单的差分进化算法,用于求解一个一维函数的最小值。你可以根据自己的需求来修改目标函数、自变量的范围、种群大小、迭代次数等参数。希望对你有帮助!
阅读全文