变异策略为基于精英保留策略的差分进化算法python程序
时间: 2023-10-11 12:13:29 浏览: 98
基于差分进化算法解决TSP问题(最优路径问题)
5星 · 资源好评率100%
好的,以下是基于精英保留策略的差分进化算法的Python程序示例:
```python
import random
# 定义目标函数,这里以简单的二元函数为例
def target_function(x):
return x[0] ** 2 + x[1] ** 2
# 定义差分进化算法函数
def differential_evolution(population_size, dimensions, bounds, max_iter):
# 初始化种群
population = []
for i in range(population_size):
individual = []
for j in range(dimensions):
individual.append(random.uniform(bounds[j][0], bounds[j][1]))
population.append(individual)
# 迭代更新
for i in range(max_iter):
new_population = []
# 遍历种群中的每个个体
for j in range(population_size):
# 选择三个不同的随机个体
indices = [index for index in range(population_size) if index != j]
a, b, c = population[random.choice(indices)], population[random.choice(indices)], population[random.choice(indices)]
# 变异操作
mutant = [a[j] + 0.5 * (b[j] - c[j]) for j in range(dimensions)]
# 交叉操作
trial = []
for j in range(dimensions):
if random.random() < 0.5:
trial.append(mutant[j])
else:
trial.append(population[j][j])
# 选择操作
if target_function(trial) < target_function(population[j]):
new_population.append(trial)
else:
new_population.append(population[j])
# 更新种群
new_population.sort(key=target_function)
population = new_population[:int(population_size / 2)] + population[int(population_size / 2):]
# 返回最优解
population.sort(key=target_function)
return population[0]
# 测试程序
bounds = [(-5, 5), (-5, 5)] # 定义搜索空间
result = differential_evolution(population_size=100, dimensions=2, bounds=bounds, max_iter=1000)
print("最优解:", result)
print("最优目标函数值:", target_function(result))
```
在上述程序中,我们定义了一个目标函数 `target_function`,它接受一个二元元组并返回一个标量值。然后,我们定义了一个 `differential_evolution` 函数,它接受四个参数:种群大小、搜索空间维度、搜索空间边界和最大迭代次数。该函数实现了差分进化算法的主要逻辑,包括初始化种群、迭代更新、变异操作、交叉操作和选择操作。最后,我们在程序末尾测试了该算法的实现效果。
阅读全文