points = np.random.randn(20000, 10)
时间: 2024-06-14 12:09:15 浏览: 142
points = np.random.randn(20000, 10) 是一个使用NumPy库生成一个20000行10列的随机数数组的代码。这个数组中的每个元素都是从标准正态分布中随机抽取的。
NumPy是一个用于科学计算的Python库,它提供了高效的多维数组对象和各种用于操作这些数组的函数。np.random.randn()函数是NumPy库中用于生成服从标准正态分布的随机数的函数。
这段代码生成的数组可以用于各种数值计算和数据分析任务,例如统计分析、机器学习等。
相关问题
翻译这段程序并自行赋值调用:import matplotlib.pyplot as plt import numpy as np import sklearn import sklearn.datasets import sklearn.linear_model def plot_decision_boundary(model, X, y): # Set min and max values and give it some padding x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole grid Z = model(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.ylabel('x2') plt.xlabel('x1') plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral) def sigmoid(x): s = 1/(1+np.exp(-x)) return s def load_planar_dataset(): np.random.seed(1) m = 400 # number of examples N = int(m/2) # number of points per class print(np.random.randn(N)) D = 2 # dimensionality X = np.zeros((m,D)) # data matrix where each row is a single example Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue) a = 4 # maximum ray of the flower for j in range(2): ix = range(Nj,N(j+1)) t = np.linspace(j3.12,(j+1)3.12,N) + np.random.randn(N)0.2 # theta r = anp.sin(4t) + np.random.randn(N)0.2 # radius X[ix] = np.c_[rnp.sin(t), rnp.cos(t)] Y[ix] = j X = X.T Y = Y.T return X, Y def load_extra_datasets(): N = 200 noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3) noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2) blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6) gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None) no_structure = np.random.rand(N, 2), np.random.rand(N, 2) return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
这段程序是一个分类模型的辅助函数,包括了绘制决策边界、sigmoid函数和加载数据集的函数。具体实现如下:
```python
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model
def plot_decision_boundary(model, X, y):
# 设置最小值和最大值,并给它们一些填充
x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
h = 0.01
# 生成一个网格,网格中点的距离为h
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# 对整个网格预测函数值
Z = model(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# 绘制轮廓和训练样本
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
def sigmoid(x):
s = 1 / (1 + np.exp(-x))
return s
def load_planar_dataset():
np.random.seed(1)
m = 400 # 样本数量
N = int(m / 2) # 每个类的样本数量
# 生成数据集
D = 2 # 特征维度
X = np.zeros((m, D)) # 特征矩阵
Y = np.zeros((m, 1), dtype='uint8') # 标签向量
a = 4 # 花的最大半径
for j in range(2):
ix = range(N*j, N*(j+1))
t = np.linspace(j*3.12, (j+1)*3.12, N) + np.random.randn(N)*0.2 # theta
r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
Y[ix] = j
X = X.T
Y = Y.T
return X, Y
def load_extra_datasets():
N = 200
noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
no_structure = np.random.rand(N, 2), np.random.rand(N, 2)
return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
```
这段程序中包含了以下函数:
- `plot_decision_boundary(model, X, y)`:绘制分类模型的决策边界,其中`model`是分类模型,`X`是特征矩阵,`y`是标签向量。
- `sigmoid(x)`:实现sigmoid函数。
- `load_planar_dataset()`:加载一个二维的花瓣数据集。
- `load_extra_datasets()`:加载五个其他数据集。
Traceback (most recent call last): File "D:\anaconda\11\lib\site-packages\IPython\core\interactiveshell.py", line 3444, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-2-2ea81b4438e6>", line 1, in <module> runfile('D:\\py\\scientificProject7\\main.py', wdir='D:\\py\\scientificProject7') File "D:\pycharm\PyCharm 2022.3.2\plugins\python\helpers\pydev\_pydev_bundle\pydev_umd.py", line 198, in runfile pydev_imports.execfile(filename, global_vars, local_vars) # execute the script File "D:\pycharm\PyCharm 2022.3.2\plugins\python\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "D:\py\scientificProject7\main.py", line 58, in <module> plt.plot(points[hull.vertices, 0], points[hull.vertices, 1], 'k--', lw=2) IndexError: index 18 is out of bounds for axis 0 with size 8
这个错误提示是因为凸包的顶点数量大于数据点数量,导致索引出错。可能是因为数据点分布不够紧密,或者数据点数量太少。可以尝试调整DBSCAN算法的参数,或者增加数据点数量,来解决这个问题。
另外,如果凸包顶点数量少于3个,也会导致绘图出错。在代码中可以添加一个判断,只对凸包顶点数量大于等于3的簇进行绘图。
修改代码示例:
```python
from sklearn.cluster import DBSCAN
from scipy.spatial import ConvexHull
import matplotlib.pyplot as plt
# 生成一些随机数据
X = np.random.randn(20, 2)
# 运行DBSCAN算法
dbscan = DBSCAN(eps=0.5, min_samples=5)
labels = dbscan.fit_predict(X)
# 将数据点按簇标记分组
clusters = {}
for i, label in enumerate(labels):
if label not in clusters:
clusters[label] = []
clusters[label].append(X[i])
# 画出每个簇的凸包
fig, ax = plt.subplots()
for label, points in clusters.items():
if label == -1:
continue
points = np.array(points)
hull = ConvexHull(points)
if len(hull.vertices) >= 3:
ax.scatter(points[:, 0], points[:, 1])
ax.plot(points[hull.vertices, 0], points[hull.vertices, 1], 'k--', lw=2)
ax.set_aspect('equal')
plt.show()
```
在上述代码中,通过添加`if len(hull.vertices) >= 3:`的判断,只对凸包顶点数量大于等于3的簇进行绘图,避免了出现错误。
阅读全文