model,auc = xgb_test(x_train, y_train,x_test, y_test)
时间: 2023-12-30 11:23:35 浏览: 95
根据提供的引用内容,可以看出这是一个使用XGBoost模型进行训练和测试的代码示例。其中,X_train和y_train是训练集的特征和标签,X_test和y_test是测试集的特征和标签。train_test_split函数用于将数据集划分为训练集和测试集,并且可以通过设置test_size参数来指定测试集的比例。random_state参数用于设置随机种子,以确保每次划分的结果一致。
下面是一个使用xgb_test函数进行模型训练和测试的示例代码:
```python
model, auc = xgb_test(X_train, y_train, X_test, y_test)
```
在这个示例中,xgb_test函数接受训练集和测试集的特征和标签作为输入,并返回训练好的模型和AUC值。AUC(Area Under Curve)是评估二分类模型性能的指标,用于衡量模型的分类准确度。
相关问题
import pandas as pd from sklearn import metrics from sklearn.model_selection import train_test_split import xgboost as xgb import matplotlib.pyplot as plt import openpyxl # 导入数据集 df = pd.read_csv("/Users/mengzihan/Desktop/正式有血糖聚类前.csv") data=df.iloc[:,:35] target=df.iloc[:,-1] # 切分训练集和测试集 train_x, test_x, train_y, test_y = train_test_split(data,target,test_size=0.2,random_state=7) # xgboost模型初始化设置 dtrain=xgb.DMatrix(train_x,label=train_y) dtest=xgb.DMatrix(test_x) watchlist = [(dtrain,'train')] # booster: params={'booster':'gbtree', 'objective': 'binary:logistic', 'eval_metric': 'auc', 'max_depth':12, 'lambda':10, 'subsample':0.75, 'colsample_bytree':0.75, 'min_child_weight':2, 'eta': 0.025, 'seed':0, 'nthread':8, 'gamma':0.15, 'learning_rate' : 0.01} # 建模与预测:50棵树 bst=xgb.train(params,dtrain,num_boost_round=50,evals=watchlist) ypred=bst.predict(dtest) # 设置阈值、评价指标 y_pred = (ypred >= 0.5)*1 print ('Precesion: %.4f' %metrics.precision_score(test_y,y_pred)) print ('Recall: %.4f' % metrics.recall_score(test_y,y_pred)) print ('F1-score: %.4f' %metrics.f1_score(test_y,y_pred)) print ('Accuracy: %.4f' % metrics.accuracy_score(test_y,y_pred)) print ('AUC: %.4f' % metrics.roc_auc_score(test_y,ypred)) ypred = bst.predict(dtest) print("测试集每个样本的得分\n",ypred) ypred_leaf = bst.predict(dtest, pred_leaf=True) print("测试集每棵树所属的节点数\n",ypred_leaf) ypred_contribs = bst.predict(dtest, pred_contribs=True) print("特征的重要性\n",ypred_contribs ) xgb.plot_importance(bst,height=0.8,title='影响糖尿病的重要特征', ylabel='特征') plt.rc('font', family='Arial Unicode MS', size=14) plt.show()
这段代码是使用XGBoost进行二分类任务的建模和预测,并输出了一些评价指标和特征重要性。下面是对代码的解释:
1. 导入必要的库:`pandas`用于数据处理,`sklearn`中的`metrics`模块用于评价指标,`train_test_split`用于划分训练集和测试集,`xgboost`用于建模,`matplotlib.pyplot`用于画图,`openpyxl`用于读取Excel文件。
2. 读取数据集:使用`pd.read_csv`读取CSV格式的数据集文件,并分别将特征和目标变量提取出来。
3. 划分训练集和测试集:使用`train_test_split`函数将数据集划分为训练集和测试集,其中`test_size=0.2`表示测试集占比为20%,`random_state=7`表示设置随机种子以保证可重复性。
4. 初始化xgboost模型设置:创建`DMatrix`对象,将训练集特征矩阵和目标变量转换为xgboost专用的数据格式。设置模型参数和超参数,例如使用GBtree作为基学习器、使用二分类逻辑回归作为目标函数、评价指标为AUC等。
5. 建模与预测:使用`xgb.train`函数训练xgboost模型,设定迭代次数为50,并在训练过程中输出训练集的性能指标。然后对测试集进行预测,得到预测概率值`ypred`。
6. 设置阈值、计算评价指标:将预测概率值转换为二分类的预测结果,并计算准确率、召回率、F1-score、精确度和AUC等评价指标,并输出结果。
7. 输出测试集每个样本的得分:输出测试集每个样本的预测得分。
8. 输出测试集每棵树所属的节点数:输出测试集每棵树所属的节点数。
9. 输出特征的重要性:输出特征的重要性,可以使用`xgb.plot_importance`函数绘制特征重要性图。
最后,通过`plt.show()`函数显示绘制的特征重要性图。
def model_xgb(train, test): """xgb模型 Args: Returns: """ # xgb参数 params = {'booster': 'gbtree', 'objective': 'binary:logistic', 'eval_metric': 'auc', 'silent': 1, 'eta': 0.01, 'max_depth': 5, 'min_child_weight': 1, 'gamma': 0, 'lambda': 1, 'colsample_bylevel': 0.7, 'colsample_bytree': 0.7, 'subsample': 0.9, 'scale_pos_weight': 1} # 数据集 dtrain = xgb.DMatrix(train.drop(['User_id', 'Coupon_id', 'Date_received', 'label'], axis=1), label=train['label']) dtest = xgb.DMatrix(test.drop(['User_id', 'Coupon_id', 'Date_received'], axis=1)) # 训练 watchlist = [(dtrain, 'train')] model = xgb.train(params, dtrain, num_boost_round=500, evals=watchlist) # 预测 predict = model.predict(dtest) # 处理结果 predict = pd.DataFrame(predict, columns=['prob']) result = pd.concat([test[['User_id', 'Coupon_id', 'Date_received']], predict], axis=1) # 特征重要性 feat_importance = pd.DataFrame(columns=['feature_name', 'importance']) feat_importance['feature_name'] = model.get_score().keys() feat_importance['importance'] = model.get_score().values() feat_importance.sort_values(['importance'], ascending=False, inplace=True) # 返回 return result, feat_importance解释一下
这段代码是一个自定义的 XGBoost 模型训练函数 `model_xgb`,其主要作用是将训练数据集和测试数据集转换为 XGBoost 可用的数据格式,然后使用 XGBoost 算法对训练数据集进行训练,最后对测试数据集进行预测,并返回预测结果和特征重要性。
具体来说,该函数的实现步骤如下:
1. 定义 XGBoost 模型的参数:包括 `booster`(使用的树模型)、`objective`(目标函数)、`eval_metric`(评价指标)、`eta`(学习率)、`max_depth`(树的最大深度)等。
2. 将训练数据集和测试数据集转换为 XGBoost 可用的数据格式。使用 `xgb.DMatrix` 函数将数据集转换为 DMatrix 对象,其中训练数据集需要包含标签列 `label`,而测试数据集则不需要。
3. 使用 XGBoost 的 `train` 函数对模型进行训练,需要指定训练数据集、模型参数、迭代次数等。
4. 使用训练好的模型对测试数据集进行预测,得到预测结果。将预测结果和测试数据集中的 `User_id`、`Coupon_id`、`Date_received` 列进行合并,得到最终的预测结果。
5. 使用 XGBoost 的 `get_score` 函数获取特征重要性,并将其保存为一个 DataFrame 对象,包括每个特征的名称和重要性值。
6. 最后,将预测结果和特征重要性返回。
通过自定义的 XGBoost 模型训练函数,可以方便地进行模型训练和预测,并获取特征重要性信息,便于后续的特征选择和优化。
阅读全文