NSGA-Ⅱpython代码
时间: 2024-06-15 21:06:07 浏览: 170
NSGAII算法的Python实现代码
5星 · 资源好评率100%
NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种经典的多目标优化算法,它基于遗传算法和非支配排序的思想。下面是一个简单的NSGA-II的Python代码示例:
```python
import random
# 定义个体类
class Individual:
def __init__(self, num_objectives):
self.num_objectives = num_objectives
self.objectives = [0] * num_objectives
self.rank = 0
self.crowding_distance = 0
def evaluate(self):
# 计算个体的目标函数值
self.objectives[0] = random.random()
self.objectives[1] = random.random()
def dominates(self, other):
# 判断个体是否支配另一个个体
dominates = False
for i in range(self.num_objectives):
if self.objectives[i] > other.objectives[i]:
return False
elif self.objectives[i] < other.objectives[i]:
dominates = True
return dominates
# 定义NSGA-II算法类
class NSGA2:
def __init__(self, num_objectives, population_size, num_generations):
self.num_objectives = num_objectives
self.population_size = population_size
self.num_generations = num_generations
def run(self):
# 初始化种群
population = []
for _ in range(self.population_size):
individual = Individual(self.num_objectives)
individual.evaluate()
population.append(individual)
# 进化过程
for generation in range(self.num_generations):
# 快速非支配排序
fronts = self.fast_non_dominated_sort(population)
# 计算拥挤度距离
for front in fronts:
self.calculate_crowding_distance(front)
# 生成新一代种群
new_population = []
front_index = 0
while len(new_population) + len(fronts[front_index]) <= self.population_size:
new_population.extend(fronts[front_index])
front_index += 1
# 按照拥挤度距离排序选择剩余个体
fronts[front_index].sort(key=lambda x: x.crowding_distance, reverse=True)
new_population.extend(fronts[front_index][:self.population_size - len(new_population)])
population = new_population
return population
def fast_non_dominated_sort(self, population):
# 快速非支配排序
fronts = [[]]
for individual in population:
individual.domination_count = 0
individual.dominated_solutions = []
for other in population:
if individual.dominates(other):
individual.dominated_solutions.append(other)
elif other.dominates(individual):
individual.domination_count += 1
if individual.domination_count == 0:
individual.rank = 0
fronts[0].append(individual)
i = 0
while len(fronts[i]) > 0:
next_front = []
for individual in fronts[i]:
for other in individual.dominated_solutions:
other.domination_count -= 1
if other.domination_count == 0:
other.rank = i + 1
next_front.append(other)
i += 1
fronts.append(next_front)
return fronts
def calculate_crowding_distance(self, front):
# 计算拥挤度距离
for individual in front:
individual.crowding_distance = 0
for i in range(self.num_objectives):
front.sort(key=lambda x: x.objectives[i])
front[0].crowding_distance = float('inf')
front[-1].crowding_distance = float('inf')
for j in range(1, len(front) - 1):
front[j].crowding_distance += (front[j + 1].objectives[i] - front[j - 1].objectives[i])
# 使用示例
nsga2 = NSGA2(num_objectives=2, population_size=100, num_generations=100)
population = nsga2.run()
# 输出最终种群中的个体
for individual in population:
print(individual.objectives)
```
这段代码实现了一个简单的NSGA-II算法,其中包括个体类`Individual`和NSGA-II算法类`NSGA2`。个体类中定义了个体的目标函数值、支配关系等属性和方法,NSGA-II算法类中定义了快速非支配排序、拥挤度距离计算等方法,并通过遗传算法进行多目标优化。
阅读全文