template<typename OutputType> inline optional<OutputType> ValueComposer<OutputType>::compose(InternalStateContainer* internalState, const std::vector<std::string>* names, ValueComposerUserFunc<OutputType> getter) { //printf("ValueComposer compose 000-----.\n"); EStorageMap states; for (auto name : *names) { eframework::TypeID type = internalState->getType(name); if (type == TypeID::get<int>() && (internalState->get<int>(name)) != nullopt) { states.set<int>(name, *internalState->get<int>(name)); //printf("ValueComposer compose set---int--.\n"); } else if (type == TypeID::get<float>() && (internalState->get<float>(name)) != nullopt) { states.set<float>(name, *internalState->get<float>(name)); //printf("ValueComposer compose set---float--.\n"); } else if (type == TypeID::get<bool>() && (internalState->get<bool>(name)) != nullopt) { states.set<bool>(name, *internalState->get<bool>(name)); //printf("ValueComposer compose set---bool--.\n"); } else if (type == TypeID::get<std::string>() && (internalState->get<std::string>(name)) != nullopt) { states.set<std::string>(name, *internalState->get<std::string>(name)); //printf("ValueComposer compose set---string--.\n"); } else { //printf("ValueComposer compose set---nullopt--.\n"); return nullopt; } } //printf("ValueComposer compose 111-----.\n"); return getter(&states); }

时间: 2024-04-18 15:32:31 浏览: 18
这是一个ValueComposer类的成员函数模板`compose`的实现。该函数接受三个参数:一个指向`InternalStateContainer`对象的指针`internalState`,一个指向字符串向量的指针`names`,以及一个`ValueComposerUserFunc<OutputType>`类型的函数指针`getter`。 函数首先创建一个名为`states`的`EStorageMap`对象,用于存储状态值。然后遍历`names`向量中的每个字符串,通过调用`internalState`对象的`getType`函数获取相应名称的类型,并根据类型将对应的值存储到`states`对象中。 如果某个名称对应的类型不匹配或者值为`nullopt`,则返回空的`optional<OutputType>`。 最后,调用传入的`getter`函数指针,将`states`对象作为参数传递,并返回其结果。 注释部分是一些调试打印语句,可以用于调试程序时打印相关信息。
相关问题

template <typename T> int compare<std::vector<T>>(const std::vector<T> &lhs, const std::vector<T> &rhs);有什么错误

在模板函数的函数名中,应该使用模板参数名 `T`,而不是具体的类型 `std::vector<T>`。因此,正确的写法应该是: ``` template <typename T> int compare(const std::vector<T> &lhs, const std::vector<T> &rhs); ``` 或者使用 `typename` 的简化形式: ``` template <class T> int compare(const std::vector<T> &lhs, const std::vector<T> &rhs); ``` 这样定义的模板函数可以比较两个 vector 容器内的元素是否相等。

用C++代码实现拓扑排序template <typename T, typename WGT_T> std::vector<typename std::graf<T, WGT_T>::size_type> topsort(const std::graf<T, WGT_T>& g)

### 回答1: 以下是用C++代码实现拓扑排序的函数: ```c++ template <typename T, typename WGT_T> std::vector<typename std::graf<T, WGT_T>::size_type> topsort(const std::graf<T, WGT_T>& g) { std::vector<typename std::graf<T, WGT_T>::size_type> order; std::queue<typename std::graf<T, WGT_T>::size_type> q; std::vector<typename std::graf<T, WGT_T>::size_type> in_degree(g.num_vertices(), 0); for (typename std::graf<T, WGT_T>::size_type i = 0; i < g.num_vertices(); ++i) { for (auto& e : g.adj_list(i)) { ++in_degree[e.to()]; } } for (typename std::graf<T, WGT_T>::size_type i = 0; i < g.num_vertices(); ++i) { if (in_degree[i] == 0) { q.push(i); } } while (!q.empty()) { typename std::graf<T, WGT_T>::size_type u = q.front(); q.pop(); order.push_back(u); for (auto& e : g.adj_list(u)) { --in_degree[e.to()]; if (in_degree[e.to()] == 0) { q.push(e.to()); } } } return order; } ``` 该函数的输入参数为一个有向图 `g`,返回值为一个顶点序列,表示拓扑排序后的顶点访问顺序。算法思路如下: 1. 统计每个顶点的入度。遍历每个顶点的邻接表,将邻接表中每个顶点的入度加1。 2. 将所有入度为0的顶点入队列。 3. 取出队列的第一个顶点,并将其加入拓扑排序结果序列中。 4. 遍历该顶点的邻接表,将邻接表中每个顶点的入度减1。如果减完之后某个顶点的入度变为0,则将该顶点入队列。 5. 重复步骤3和4,直到队列为空。 时间复杂度为 $O(V+E)$,其中 $V$ 是顶点数,$E$ 是边数。 ### 回答2: 拓扑排序是一种用于有向图的算法,将图中的顶点按照一种线性顺序进行排序。在拓扑排序中,如果图中存在从顶点 A 到顶点 B 的有向边,那么在排序结果中,顶点 A 一定在顶点 B 之前。 下面是用 C++ 代码实现拓扑排序的示例: ```cpp #include <iostream> #include <vector> #include <queue> template <typename T> std::vector<T> topsort(const std::vector<std::vector<T>>& graph) { std::vector<T> sortedResult; std::vector<int> inDegree(graph.size(), 0); std::queue<T> zeroInDegreeQueue; // 计算每个顶点的入度 for (const auto& adjacentNodes : graph) { for (const auto& node : adjacentNodes) { inDegree[node]++; } } // 将入度为 0 的顶点加入队列 for (int i = 0; i < inDegree.size(); i++) { if (inDegree[i] == 0) { zeroInDegreeQueue.push(i); } } // 拓扑排序主循环 while (!zeroInDegreeQueue.empty()) { T currentNode = zeroInDegreeQueue.front(); zeroInDegreeQueue.pop(); sortedResult.push_back(currentNode); // 将所有与当前顶点相邻的顶点入度减 1 for (const auto& node : graph[currentNode]) { inDegree[node]--; // 如果某个顶点的入度降为 0,则将其加入队列 if (inDegree[node] == 0) { zeroInDegreeQueue.push(node); } } } // 如果排序后的结果包含图中所有顶点,则返回排序结果,否则返回空数组表示有环 if (sortedResult.size() == graph.size()) { return sortedResult; } else { return std::vector<T>(); } } int main() { // 创建一个有向图 std::vector<std::vector<int>> graph = { {1, 2}, // 0 -> 1, 0 -> 2 {2, 3}, // 1 -> 2, 1 -> 3 {3}, // 2 -> 3 {4}, // 3 -> 4 {5}, // 4 -> 5 {5} // 5 -> 5 (自环) }; // 调用拓扑排序函数 std::vector<int> sortedResult = topsort(graph); // 输出排序结果 if (sortedResult.empty()) { std::cout << "The graph contains a cycle." << std::endl; } else { std::cout << "Topological Sort Result:"; for (const auto& node : sortedResult) { std::cout << " " << node; } std::cout << std::endl; } return 0; } ``` 以上代码使用邻接表表示有向图,并使用队列实现拓扑排序算法。首先计算每个顶点的入度,将入度为 0 的顶点加入队列,并在主循环中不断处理队列中的顶点,将其邻接顶点的入度减 1。最后,如果排序后的顶点数与图中的顶点数相同,则返回排序结果;否则,说明存在环,返回空数组。 示例中的有向图中包含了一个自环(5 -> 5),即一个顶点指向自己。因为拓扑排序要求没有环,所以自环会导致拓扑排序无法进行,最后的结果会返回一个空数组。 ### 回答3: 拓扑排序是一种用于有向无环图(DAG)的排序算法。在拓扑排序中,将图中的节点按照一种线性顺序进行排序,使得对于任意的边 (u, v),节点 u 在节点 v 之前。 下面是C++代码实现拓扑排序的模板函数: ```cpp template <typename T, typename WGT_T> std::vector<typename std::graf<T, WGT_T>::size_type> topsort(const std::graf<T, WGT_T>& g) { std::vector<typename std::graf<T, WGT_T>::size_type> result; // 存储拓扑排序的结果 std::queue<typename std::graf<T, WGT_T>::size_type> q; // 存储入度为0的节点 // 统计每个节点的入度 std::vector<typename std::graf<T, WGT_T>::size_type> in_degree(g.num_vertices(), 0); for (typename std::graf<T, WGT_T>::size_type u = 0; u < g.num_vertices(); ++u) { for (auto v : g.adjacency_list(u)) { ++in_degree[v]; } } // 将入度为0的节点入队列 for (typename std::graf<T, WGT_T>::size_type u = 0; u < g.num_vertices(); ++u) { if (in_degree[u] == 0) { q.push(u); } } // 循环处理入度为0的节点 while (!q.empty()) { typename std::graf<T, WGT_T>::size_type u = q.front(); q.pop(); result.push_back(u); // 将所有u指向的节点的入度减1,并将入度减为0的节点入队列 for (auto v : g.adjacency_list(u)) { --in_degree[v]; if (in_degree[v] == 0) { q.push(v); } } } // 如果结果集合的大小不等于节点的数量,则说明图中存在环路 if (result.size() != g.num_vertices()) { result.clear(); // 清空结果 throw std::runtime_error("Graph contains a cycle"); } return result; } ``` 这个函数使用了队列来存储入度为0的节点。首先,统计每个节点的入度,然后将入度为0的节点入队列。然后,循环处理队列中的节点,将结果放入拓扑排序的结果集合中,并将所有从该节点出发的边的终点的入度减1。如果结果集合的大小不等于节点的数量,则说明图中存在环路,此时会抛出一个异常。 这个函数的时间复杂度是O(V + E),其中V是节点的数量,E是边的数量。

相关推荐

最新推荐

recommend-type

【图像压缩】 GUI矩阵的奇异值分解SVD灰色图像压缩【含Matlab源码 4359期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

数字舵机控制程序流程图

以下是数字舵机控制程序的流程图: ![数字舵机控制程序流程图](https://i.imgur.com/2fgKUQs.png) 1. 初始化引脚:设置舵机控制引脚为输出模式。 2. 初始化舵机:将舵机控制引脚输出的PWM信号设置为初始值,初始化舵机的位置。 3. 接收控制信号:通过串口或者其他方式接收舵机控制信号。 4. 解析控制信号:解析接收到的控制信号,确定舵机需要转动的角度和方向。 5. 转动舵机:根据解析后的控制信号,设置舵机控制引脚输出的PWM信号的占空比,使舵机转动到目标位置。 6. 延时:为了保证舵机转动到目标位置后稳定,需要延时一段时间。 7. 返回接收控制信
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。