30 19 C:\Users\dell\Desktop\一元多项式加法运算C语言实现.c [Error] expected ';', ',' or ')' before '&' token

时间: 2024-06-12 21:10:46 浏览: 10
这个错误提示是因为在你的代码中,有一个 '&' 符号出现在了不应该出现的地方。可能是因为你在定义函数参数时出现了问题。请检查一下你的代码,看看是否有类似于以下的错误: ``` void func(int& a, int& b) { // do something } ``` 正确的写法应该是将 '&' 放在类型名后面,而不是参数名后面: ``` void func(int &a, int &b) { // do something } ```
相关问题

c语言链表是怎么存储数据结构,数据结构(C语言)用单链表存储一元多项式,并实现... 数据结构一元多项式计算(急求)...

C语言链表是通过指针实现的数据结构,每个节点包含一个数据元素和一个指向下一个节点的指针。链表可以用于存储任意类型的数据结构,包括一元多项式。 在用单链表存储一元多项式时,每个节点可以表示一个项,包含两个元素:系数和指数。链表的头节点可以表示多项式本身,包含一个指向第一个项的指针。 实现一元多项式计算时,可以通过遍历链表,将相同次数的项合并,得到新的多项式。具体实现可以使用循环或递归算法,遍历链表并进行计算。 以下是一个简单的单链表实现一元多项式计算的示例代码: ```c #include <stdio.h> #include <stdlib.h> // 定义一元多项式项的结构体 typedef struct node { float coef; // 系数 int exp; // 指数 struct node* next; // 指向下一个节点的指针 } Term; // 定义一元多项式的结构体 typedef struct { Term* head; // 指向第一个项的指针 } Polynomial; // 创建一元多项式 Polynomial create_polynomial() { Polynomial poly; poly.head = NULL; return poly; } // 在一元多项式中插入一项 void insert_term(Polynomial* poly, float coef, int exp) { Term* term = (Term*)malloc(sizeof(Term)); term->coef = coef; term->exp = exp; term->next = NULL; if (poly->head == NULL) { poly->head = term; } else { Term* p = poly->head; while (p->next != NULL) { p = p->next; } p->next = term; } } // 遍历一元多项式并打印 void print_polynomial(Polynomial poly) { Term* p = poly.head; while (p != NULL) { printf("%.2fx^%d ", p->coef, p->exp); if (p->next != NULL) { printf("+ "); } p = p->next; } printf("\n"); } // 计算一元多项式的值 float evaluate_polynomial(Polynomial poly, float x) { float result = 0; Term* p = poly.head; while (p != NULL) { result += p->coef * pow(x, p->exp); p = p->next; } return result; } // 合并一元多项式 Polynomial merge_polynomial(Polynomial poly1, Polynomial poly2) { Polynomial result = create_polynomial(); Term *p1 = poly1.head, *p2 = poly2.head; while (p1 != NULL && p2 != NULL) { if (p1->exp > p2->exp) { insert_term(&result, p1->coef, p1->exp); p1 = p1->next; } else if (p1->exp < p2->exp) { insert_term(&result, p2->coef, p2->exp); p2 = p2->next; } else { insert_term(&result, p1->coef + p2->coef, p1->exp); p1 = p1->next; p2 = p2->next; } } while (p1 != NULL) { insert_term(&result, p1->coef, p1->exp); p1 = p1->next; } while (p2 != NULL) { insert_term(&result, p2->coef, p2->exp); p2 = p2->next; } return result; } int main() { Polynomial poly1 = create_polynomial(); insert_term(&poly1, 2, 3); insert_term(&poly1, -3, 2); insert_term(&poly1, 1, 0); printf("Poly1: "); print_polynomial(poly1); Polynomial poly2 = create_polynomial(); insert_term(&poly2, -4, 3); insert_term(&poly2, 3, 1); insert_term(&poly2, 2, 0); printf("Poly2: "); print_polynomial(poly2); Polynomial poly3 = merge_polynomial(poly1, poly2); printf("Poly3: "); print_polynomial(poly3); float result = evaluate_polynomial(poly3, 2); printf("Result: %.2f\n", result); return 0; } ```

用c语言数据结构实现一元多项式加法运算

#include<stdio.h> #include<stdlib.h> // 定义多项式结构体 typedef struct Polynomial{ int coef; // 系数 int expn; // 指数 struct Polynomial *next; // 指向下一项的指针 }Polynomial; // 创建多项式 Polynomial* createPoly(){ Polynomial *head = (Polynomial*)malloc(sizeof(Polynomial)); // 头节点 head->next = NULL; Polynomial *p = head; // 指针p指向头节点 int n; // 项数 printf("请输入多项式项数:"); scanf("%d", &n); for(int i=0; i<n; i++){ Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); // 新建节点 printf("请输入第%d项的系数和指数:", i+1); scanf("%d%d", &node->coef, &node->expn); node->next = NULL; p->next = node; // 将新节点插入到链表尾部 p = node; } return head; } // 显示多项式 void displayPoly(Polynomial *poly){ Polynomial *p = poly->next; // 指针p指向第一个节点 while(p){ printf("%dX^%d", p->coef, p->expn); p = p->next; if(p) printf("+"); } printf("\n"); } // 多项式相加 Polynomial* addPoly(Polynomial *poly1, Polynomial *poly2){ Polynomial *p1 = poly1->next; // 指针p1指向第一个节点 Polynomial *p2 = poly2->next; // 指针p2指向第一个节点 Polynomial *head = (Polynomial*)malloc(sizeof(Polynomial)); // 头节点 head->next = NULL; Polynomial *p = head; // 指针p指向头节点 while(p1 && p2){ if(p1->expn == p2->expn){ // 指数相等,系数相加 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p1->coef + p2->coef; node->expn = p1->expn; node->next = NULL; p->next = node; p = node; p1 = p1->next; p2 = p2->next; } else if(p1->expn > p2->expn){ // 第一个多项式指数大于第二个多项式指数 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p1->coef; node->expn = p1->expn; node->next = NULL; p->next = node; p = node; p1 = p1->next; } else{ // 第一个多项式指数小于第二个多项式指数 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p2->coef; node->expn = p2->expn; node->next = NULL; p->next = node; p = node; p2 = p2->next; } } while(p1){ // 第一个多项式还有剩余项 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p1->coef; node->expn = p1->expn; node->next = NULL; p->next = node; p = node; p1 = p1->next; } while(p2){ // 第二个多项式还有剩余项 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p2->coef; node->expn = p2->expn; node->next = NULL; p->next = node; p = node; p2 = p2->next; } return head; } int main(){ printf("请输入第一个多项式:\n"); Polynomial *poly1 = createPoly(); // 创建第一个多项式 printf("第一个多项式为:"); displayPoly(poly1); // 显示第一个多项式 printf("请输入第二个多项式:\n"); Polynomial *poly2 = createPoly(); // 创建第二个多项式 printf("第二个多项式为:"); displayPoly(poly2); // 显示第二个多项式 Polynomial *result = addPoly(poly1, poly2); // 两个多项式相加 printf("两个多项式相加后的结果为:"); displayPoly(result); // 显示相加后的结果 return 0; }

相关推荐

最新推荐

recommend-type

C语言:一元多项式加减法运算(链表 附答案).docx

《C语言实现一元多项式加减法运算的链表方法》 在计算机科学中,数据结构和算法是解决问题的基础工具。本篇文章将探讨如何使用C语言通过链表实现一元多项式的加减法运算。这是一道适合初学者的链表实践题目,通过这...
recommend-type

数据结构实验报告之一元多项式求和(链表)报告2.doc

实验内容:一元多项式求和。 把任意给定的两个一元多项式P(x) ,Q(x) 输入计算机,计算它们的和并输出计算结果。 实验内容: 1.问题描述: 一元多项式求和——把任意给定的两个一元多项式P(x) ,Q(x) 输入计算机,...
recommend-type

数据结构 一元多项式运算 C++实现

数据结构一元多项式运算 C++实现 一、设计简要说明 本程序“一元多项式运算”是以实现一元多项式的简单运算为目的的简单程序。该程序界面友好,操作方便。能对一元多项式进行求导,相加,相乘等运算。 二、程序...
recommend-type

使用c或C++一元稀疏多项式的加法运算

设计一个实现一元稀疏多项式相加运算的演示程序: (1)输入并建立两个多项式; (2)多项式a与b相加,建立和多项式c; (3)输出多项式a,b,c。输出格式:比如多项式a为:A(x)=c1xe1+ c2xe2+…+ cmxem,其中,ci和...
recommend-type

数据结构,课程设计,c语言,一元多项式计算

顺序结构、动态链表结构下的一元多项式的加法、减法、乘法的实现。 设有一元多项式Am(x)和Bn(x). Am(x)=A0+A1x1+A2x2+A3x3+… +Amxm Bn(x)=B0+B1x1+B2x2+B3x3+… +Bnxn 请实现求M(x)= Am(x)+Bn(x)、M(x)= Am(x)-...
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。