datas = collections.OrderedDict()'in <string>' requires string as left operand, not collections.OrderedDict
时间: 2024-10-06 10:05:22 浏览: 33
这个错误提示是在 Python 中发生的,当你尝试把 `collections.OrderedDict` 类型的变量赋值给字符串模板 `<string>` 的左侧时,出现了问题。Python 字符串模板 (`<string>')` 需要一个字符串作为左操作数,而不是一个字典对象如 `OrderedDict`。
例如,如果你想使用字符串模板动态生成包含字典内容的字符串,你应该这样做:
```python
from collections import OrderedDict
data = {'name': 'John', 'age': 30}
template = "<Name> is {name}, and he is {age} years old."
# 正确的方式是先将字典转为字符串
formatted_string = template.format(**data)
print(formatted_string) # 输出 "John is John, and he is 30 years old."
```
在这个例子中,`**data` 是将 `OrderedDict` 的键值对展开到模板中的语法。
相关问题
using DistrictQuery.IRepository; using System; using System.Collections.Generic; using System.Configuration; using System.Linq; using System.Text; using System.Threading.Tasks; using Simple.Data; using DistrictQuery.Domain; using System.Data.SqlClient; namespace SimpleDataRepository { public class DbRepository : IDbRespository { private string _connectionString = ConfigurationManager.ConnectionStrings["SimpleDb"].ConnectionString; public dynamic Db { get { return Database.OpenConnection(_connectionString); } } public IEnumerable<Province> Provinces { get { var datas = new List<Province>(); datas = Db.Province.All(); return datas; } } public IEnumerable<City> Cities { get { var datas = new List<City>(); datas = Db.City.All(); return datas; } } public IEnumerable<District > Districts { get { var datas = new List<District>(); datas = Db.District.All(); return datas; } } } }
这是一个使用 Simple.Data 进行数据库访问的仓库类,实现了 IDbRepository 接口,其中包含了获取省份、城市和区县信息的方法。具体实现中,使用了 ConfigurationManager 类获取连接字符串,然后通过 Database.OpenConnection 方法连接到数据库,再通过 All() 方法获取所有数据,最后将数据放入 List 中返回。该仓库类可以用于查询省市区数据。
jdk8 优化以下代码: for (DqExecuteResult dqExecuteResult : dqExecuteResults) { String errorOutputPath = dqExecuteResult.getErrorOutputPath(); Path path = new Path(errorOutputPath); R<List<String>> getFileResult = resourceClient.getFilesAtPath(path.toUri().getPath()); if (null != getFileResult && getFileResult.isSuccess()) { for (String fullPath : getFileResult.getData()) { R<List<String>> previewResult = resourceClient.viewFileByPath(new Path(fullPath).toUri().getPath(), query.getCurrent(), query.getSize(), "\n"); if (null != previewResult && previewResult.isSuccess()) { if("原始库".equals(datasourceName)){ Long datasourceId = iDataSourceClient.queryRawDataSource().getId(); List<MetaColumn> tableColumns = iDataSourceMetaClient.getTableColumns(datasourceId, tableName); for (MetaColumn metaColumn : tableColumns){ headers.add(metaColumn.getColumnName()); } } else if("标准库".equals(datasourceName)){ Long datasourceId = iDataSourceClient.queryModelDataSource().getId(); List<MetaColumn> tableColumns = iDataSourceMetaClient.getTableColumns(datasourceId, tableName); for (MetaColumn metaColumn : tableColumns){ headers.add(metaColumn.getColumnName()); } } int headerSize = headers.size(); List<String> datas = previewResult.getData(); StringBuilder contextBuilder = new StringBuilder(); for(String data : datas){ contextBuilder.append(data.replaceAll("[\r\n\t]", " ")); contextBuilder.append("\n"); } StringReader reader = new StringReader(contextBuilder.toString()); Iterable<CSVRecord> records = CSVFormat.DEFAULT.parse(reader); for (CSVRecord record : records) { if (record.size() == headerSize){ List<String> content = new ArrayList<>(); for (String column : record) { content.add(column); } contents.add(content); } } } } } }
可以通过以下方式对代码进行优化:
1. 首先,可以将重复的代码段提取为一个方法,以便在两个 if 块中重用。例如:
```
private List<MetaColumn> getTableColumns(String datasourceName, String tableName) {
Long datasourceId;
if ("原始库".equals(datasourceName)) {
datasourceId = iDataSourceClient.queryRawDataSource().getId();
} else if ("标准库".equals(datasourceName)) {
datasourceId = iDataSourceClient.queryModelDataSource().getId();
}
return iDataSourceMetaClient.getTableColumns(datasourceId, tableName);
}
```
2. 其次,可以将 CSV 解析和数据处理逻辑提取为一个方法:
```
private List<List<String>> processCSVData(List<String> datas, List<String> headers) throws IOException {
int headerSize = headers.size();
List<List<String>> contents = new ArrayList<>();
StringBuilder contextBuilder = new StringBuilder();
for (String data : datas) {
contextBuilder.append(data.replaceAll("[\r\n\t]", " "));
contextBuilder.append("\n");
}
StringReader reader = new StringReader(contextBuilder.toString());
Iterable<CSVRecord> records = CSVFormat.DEFAULT.parse(reader);
for (CSVRecord record : records) {
if (record.size() == headerSize) {
List<String> content = new ArrayList<>();
for (String column : record) {
content.add(column);
}
contents.add(content);
}
}
return contents;
}
```
3. 然后,可以使用 Java 8 的 Lambda 表达式和方法引用来简化代码。例如:
```
dqExecuteResults.stream()
.map(DqExecuteResult::getErrorOutputPath)
.map(Path::new)
.map(Path::toUri)
.map(URI::getPath)
.map(resourceClient::getFilesAtPath)
.filter(Objects::nonNull)
.filter(R::isSuccess)
.flatMap(result -> result.getData().stream())
.map(Path::new)
.map(Path::toUri)
.map(URI::getPath)
.map(fullPath -> resourceClient.viewFileByPath(fullPath, query.getCurrent(), query.getSize(), "\n"))
.filter(Objects::nonNull)
.filter(R::isSuccess)
.flatMap(result -> {
List<String> datas = result.getData();
List<String> headers = new ArrayList<>();
if ("原始库".equals(datasourceName) || "标准库".equals(datasourceName)) {
getTableColumns(datasourceName, tableName).stream()
.map(MetaColumn::getColumnName)
.forEach(headers::add);
}
try {
return processCSVData(datas, headers).stream();
} catch (IOException e) {
e.printStackTrace();
return Stream.empty();
}
})
.forEach(contents::add);
```
这段代码使用了 stream 操作来简化循环和条件语句,使用方法引用、Lambda 表达式和函数式接口来写出更简洁的代码。
阅读全文