CNN架构演变:从LeNet到ResNet,深度学习的里程碑

发布时间: 2024-08-17 08:26:11 阅读量: 34 订阅数: 45
![CNN架构演变:从LeNet到ResNet,深度学习的里程碑](https://liuruiyang98.github.io/posts/2021/09/16/tnt-1.png) # 1. 卷积神经网络(CNN)概述** 卷积神经网络(CNN)是一种深度学习模型,专为处理具有网格状结构的数据(如图像)而设计。CNN的基本原理是利用卷积操作和池化操作来提取数据中的特征。 卷积操作通过滑动一个称为内核的权重矩阵来扫描输入数据,并计算每个位置的加权和。这有助于提取局部特征,例如边缘和纹理。池化操作通过将相邻元素合并成一个值来减少特征图的大小,从而降低计算成本并提高鲁棒性。 CNN的架构通常由交替的卷积层和池化层组成,每个层负责提取不同层次的特征。通过堆叠多个层,CNN可以学习复杂的高级表示,从而实现出色的图像识别和分析性能。 # 2. CNN架构演变 ### 2.1 LeNet:CNN的先驱 **LeNet**(LeCun et al., 1998)是第一个成功的卷积神经网络,它为后续的CNN架构奠定了基础。LeNet的主要特点包括: - **卷积层:**LeNet包含两个卷积层,每个卷积层使用5x5的卷积核进行卷积操作,提取图像中的局部特征。 - **池化层:**卷积层之后是池化层,使用2x2的平均池化操作,减少特征图的尺寸并增强特征的鲁棒性。 - **全连接层:**卷积层和池化层之后是两个全连接层,用于将提取的特征映射到输出类别。 **代码块:** ```python import torch import torch.nn as nn import torch.nn.functional as F class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool1 = nn.AvgPool2d(2) self.conv2 = nn.Conv2d(6, 16, 5) self.pool2 = nn.AvgPool2d(2) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool1(F.relu(self.conv1(x))) x = self.pool2(F.relu(self.conv2(x))) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ``` **逻辑分析:** * `nn.Conv2d`创建卷积层,第一个参数指定输入通道数,第二个参数指定输出通道数,第三个参数指定卷积核大小。 * `nn.AvgPool2d`创建平均池化层,参数指定池化窗口大小。 * `nn.Linear`创建全连接层,参数指定输入特征数和输出特征数。 * `F.relu`应用ReLU激活函数。 ### 2.2 AlexNet:突破性进展 **AlexNet**(Krizhevsky et al., 2012)是CNN架构的突破性进展,它在ImageNet图像分类竞赛中取得了冠军。AlexNet的主要特点包括: - **更深的网络结构:**AlexNet包含8层卷积层和3层全连接层,比LeNet更深,可以提取更复杂的特征。 - **更大的卷积核:**AlexNet使用11x11和5x5的卷积核,比LeNet的5x5卷积核更大,可以捕获更大的局部区域。 - **重叠池化:**AlexNet使用重叠池化,即池化窗口重叠,可以提取更多信息。 **代码块:** ```python import torch import torch.nn as nn import torch.nn.functional as F class AlexNet(nn.Module): def __init__(self): super(AlexNet, self).__init__() self.conv1 = nn.Conv2d(3, 96, 11, stride=4) self.pool1 = nn.MaxPool2d(3, stride=2) self.conv2 = nn.Conv2d(96, 256, 5, padding=2) self.pool2 = nn.MaxPool2d(3, stride=2) self.conv3 = nn.Conv2d(256, 384, 3, padding=1) self.conv4 = nn.Conv2d(384, 384, 3, padding=1) self.conv5 = nn.Conv2d(384, 256, 3, padding=1) self.pool5 = nn.MaxPool2d(3, stride=2) self.fc1 = nn.Linear(256 * 6 * 6, 4096) self.fc2 = nn.Linear(4096, 4096) self.fc3 = nn.Linear(4096, 1000) def forward(self, x): x = self.pool1(F.relu(self.conv1(x))) x = self.pool2(F.relu(self.conv2(x))) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = self.pool5(F.relu(self.conv5(x))) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ``` **逻辑分析:** * `nn.MaxPool2d`创建最大池化层,参数指定池化窗口大小和步长。 * `nn.ReLU`应用ReLU激活函数。 * `F.relu`应用ReLU激活函数。 * `nn.Linear`创建全连接层,参数指定输入特征数和输出特征数。 ### 2.3 VGGNet:加深网络结构 **VGGNet**(Simonyan and Zisserman, 2014)进一步加深了CNN的网络结构,它包含16层或19层卷积层,没有全连接层。VGGNet的主要特点包括: - **更深的网络结构:**VGGNet-16包含16层卷积层,VGGNet-19包含19层卷积层,比AlexNet更深。
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

张_伟_杰

人工智能专家
人工智能和大数据领域有超过10年的工作经验,拥有深厚的技术功底,曾先后就职于多家知名科技公司。职业生涯中,曾担任人工智能工程师和数据科学家,负责开发和优化各种人工智能和大数据应用。在人工智能算法和技术,包括机器学习、深度学习、自然语言处理等领域有一定的研究
专栏简介
本专栏深入探讨了 YOLO 卷积神经网络 (CNN) 在目标检测领域的关系。它包含一系列文章,涵盖了 YOLOv5 的优势、训练秘诀、部署指南和实际应用。此外,专栏还介绍了 CNN 基础知识、架构演变、训练秘诀和在图像分类中的应用。通过结合 YOLO 和 CNN 的知识,读者可以了解目标检测算法的最新进展,并学习如何利用这些技术来解决现实世界中的问题,例如安防监控和自动驾驶。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

OWASP安全测试实战:5个真实案例教你如何快速定位与解决安全问题

![OWASP安全测试实战:5个真实案例教你如何快速定位与解决安全问题](https://www.dailysecu.com/news/photo/202109/129317_152325_30.jpg) # 摘要 本文系统地阐述了OWASP安全测试的基础知识,重点解析了OWASP前10项安全风险,并提供了防范这些风险的最佳实践。章节中详细介绍了注入攻击、身份验证和会话管理漏洞、安全配置错误等多种安全风险的原理、形成原因、影响及应对策略。同时,通过实战技巧章节,读者能够掌握安全测试流程、工具应用及自动化操作,并了解如何进行漏洞分析和制定修复策略。文中还包含对真实案例的分析,旨在通过实际事件来

【多线程编程最佳实践】:在JDK-17中高效使用并发工具

![jdk-17_linux-x64_bin.deb.zip](https://img-blog.csdnimg.cn/6ee4c20e4f9c44e281c870524c3f1cf3.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBATWluZ2dlUWluZ2NodW4=,size_20,color_FFFFFF,t_70,g_se,x_16) # 摘要 多线程编程是提升现代软件系统性能的关键技术之一,尤其是在JDK-17等新版本的Java开发工具包(JDK)中,提供

【智能温室控制系统】:DS18B20在农业应用中的革命性实践

![【智能温室控制系统】:DS18B20在农业应用中的革命性实践](https://images.theengineeringprojects.com/image/main/2019/01/Introduction-to-DS18B20.jpg) # 摘要 本文详细介绍了智能温室控制系统的设计与实现,首先概述了该系统的组成与功能特点,随后深入探讨了DS18B20温度传感器的基础知识及其在农业中的应用潜力。接着,文章阐述了智能温室硬件搭建的过程,包括选择合适的主控制器、传感器的接口连接、供电管理以及布局策略。在软件开发方面,本文讨论了实时温度数据监控、编程环境选择、数据处理逻辑以及自动化控制算

【HPE Smart Storage故障速查手册】:遇到问题,30分钟内快速解决

![【HPE Smart Storage故障速查手册】:遇到问题,30分钟内快速解决](https://img-cdn.thepublive.com/fit-in/1200x675/dq/media/post_banners/wp-content/uploads/2016/04/hpe_storage.jpg) # 摘要 本文提供了一个关于HPE Smart Storage系统的全面概览,介绍了存储系统工作原理、故障诊断的基础理论,并详细阐述了HPE Smart Storage的故障速查流程。通过故障案例分析,文章展示了在硬盘、控制器和网络方面常见问题的修复过程和解决策略。此外,本文还强调了

【数据安全守门员】:4个实用技巧确保wx-charts数据安全无漏洞

![【数据安全守门员】:4个实用技巧确保wx-charts数据安全无漏洞](https://img-blog.csdnimg.cn/e3717da855184a1bbe394d3ad31b3245.png) # 摘要 数据安全是信息系统的核心,随着技术的发展,保护数据免受未授权访问和滥用变得越来越具有挑战性。本文深入探讨了wx-charts这一数据可视化工具的基本安全特性,包括其架构、访问控制配置、数据加密技巧、监控与审核操作,以及如何实现高可用性和灾难恢复策略。文章详细分析了加密算法的选择、传输加密的实现、静态数据存储的安全性,并提供了实现日志记录、分析和审计的方法。通过案例研究,本文总结

【CMOS集成电路设计权威指南】:拉扎维习题深度解析,精通电路设计的10个秘密武器

![模拟CMOS集成电路设计 习题解答 (拉扎维)](https://rahsoft.com/wp-content/uploads/2021/04/Screenshot-2021-04-21-at-22.04.01.png) # 摘要 随着集成电路技术的发展,CMOS集成电路设计已成为电子工程领域的关键环节。本文首先概述了CMOS集成电路设计的基本原理与方法。接着,深入解析了拉扎维习题中的关键知识点,包括MOSFET的工作原理、CMOS反相器分析、电路模型构建、模拟与仿真等。随后,本文探讨了CMOS电路设计中的实战技巧,涉及参数优化、版图设计、信号完整性和电源管理等问题。在高级话题章节,分析

【Visual C++ 2010运行库新手必读】:只需三步完成安装与配置

![【Visual C++ 2010运行库新手必读】:只需三步完成安装与配置](https://hemsofttech.com/wp-content/uploads/2020/10/SettingUpEV-1.jpg) # 摘要 本文全面介绍了Visual C++ 2010运行库的相关知识,包括运行库概述、安装、配置及实践应用。首先,本文概述了Visual C++ 2010运行库的组成与功能,阐述了其在Visual C++开发中的核心作用。接着,详细介绍了安装运行库的步骤、系统兼容性要求以及环境配置的注意事项。在深入理解与高级应用章节,探讨了高级配置选项、非官方运行库的安装与维护,以及运行库

化学绘图效率提升大揭秘:ACD_ChemSketch高级技巧全解析

![ACD_ChemSketch_12.0_中文使用指南](https://www.wecomput.com/wp-content/uploads/2020/11/4-1605347905.png) # 摘要 ACD_ChemSketch是一款专业的化学绘图软件,广泛应用于教学和科研领域。本文全面介绍了ACD_ChemSketch的基础操作、高级绘图技巧、自动化与定制化功能,以及在教学和科研中的具体应用。基础操作部分详细阐述了界面布局、工具栏以及文档管理,确保用户能够高效进行分子结构的绘制和管理。高级绘图技巧部分探讨了如何利用软件进行复杂化学结构的编辑,包括三维模型的创建和编辑。自动化与定制

晶体结构建模软件故障排除:一文掌握快速解决问题的秘密

![晶体结构建模软件故障排除:一文掌握快速解决问题的秘密](http://www.yishimei.cn/upload/2023/3/202303232130453671.png) # 摘要 晶体结构建模软件是材料科学和工程领域的重要工具,其稳定性和准确性直接影响研究结果。本文旨在提供对软件故障全面的理论认识,包括软件故障的分类、特征、根本原因以及心理学和认知理论。接着深入探讨了软件故障诊断技术,如日志分析、性能监控、代码审计等,并提出相应的修复策略和预防措施。通过分析实战案例,本文强化了理论与实践的结合。最后,展望了软件故障排除的未来,特别是在人工智能和持续学习框架下,提升故障排除的效率和

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )