特征工程:数据预处理与特征选择

发布时间: 2023-12-20 13:00:38 阅读量: 43 订阅数: 24
PDF

数据预处理及特征工程

### 1. 第一章:特征工程简介 特征工程作为机器学习和数据分析中不可或缺的一环,扮演着至关重要的角色。本章将介绍特征工程的概念、作用以及在数据分析中的重要性,同时也会详细探讨特征工程的主要任务。 ## 第二章:数据预处理技术 数据预处理是特征工程中至关重要的一环,它包括数据清洗、缺失值处理、数据标准化、数据归一化、数据变换和异常值处理等多个步骤,下面将分别介绍各种数据预处理技术。 ### 2.1 数据清洗与缺失值处理 在实际的数据分析过程中,数据往往存在着各种问题,比如缺失值、重复值、异常值等。数据清洗是指对原始数据进行初步处理,去除脏数据、重复数据等,保证数据的质量和完整性。缺失值处理是数据清洗的重要环节,常用的方法包括删除缺失样本、插补法、均值/中位数/众数填补等。 ```python # Python示例代码:使用均值填补缺失值 import pandas as pd from sklearn.impute import SimpleImputer # 读取数据 data = pd.read_csv('data.csv') # 实例化SimpleImputer对象 imputer = SimpleImputer(strategy='mean') # 对含有缺失值的列进行均值填补 data[['feature1', 'feature2']] = imputer.fit_transform(data[['feature1', 'feature2']]) ``` ### 2.2 数据标准化与归一化 数据标准化和归一化是将数据按比例缩放,使之落入特定的范围。标准化是指将数据按其特征的均值和标准差进行缩放,使得数据的分布符合标准正态分布;而归一化是将数据按最大值和最小值进行缩放,使其取值范围在[0, 1]之间。 ```java // Java示例代码:使用MinMaxScaler进行数据归一化 import org.apache.spark.ml.feature.MinMaxScaler import org.apache.spark.ml.feature.MinMaxScalerModel import org.apache.spark.ml.linalg.Vectors // 构造数据 List<Row> data = Arrays.asList( RowFactory.create(Vectors.dense(1.0, 0.1)), RowFactory.create(Vectors.dense(2.0, 1.1)), RowFactory.create(Vectors.dense(3.0, 10.1)) ); StructType schema = new StructType(new StructField[]{ new StructField("features", new VectorUDT(), false, Metadata.empty()), }); Dataset<Row> dataFrame = spark.createDataFrame(data, schema); // 构建归一化模型 MinMaxScaler scaler = new MinMaxScaler() .setInputCol("features") .setOutputCol("scaledFeatures"); // 训练归一化模型 MinMaxScalerModel scalerModel = scaler.fit(dataFrame); // 归一化数据 Dataset<Row> scaledData = scalerModel.transform(dataFrame); ``` ### 2.3 数据变换和处理异常值 数据变换是对原始数据进行函数变换或映射,以改变数据的统计特性。常见的数据变换方法包括对数变换、幂变换、Box-Cox变换等。同时,异常值(outlier)是指在样本中出现的异常数值,可以通过
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

张_伟_杰

人工智能专家
人工智能和大数据领域有超过10年的工作经验,拥有深厚的技术功底,曾先后就职于多家知名科技公司。职业生涯中,曾担任人工智能工程师和数据科学家,负责开发和优化各种人工智能和大数据应用。在人工智能算法和技术,包括机器学习、深度学习、自然语言处理等领域有一定的研究
专栏简介
本专栏旨在为初学者提供一套全面的Python机器学习入门指南。从Python的安装和机器学习库的配置开始,逐步介绍Python的基础语法与数据结构,以及如何利用Pandas库进行数据处理与清洗。此外,我们还将深入探讨数据可视化工具Matplotlib与Seaborn的运用,以及机器学习基础概念与算法原理的理解。在接下来的章节中,我们将介绍Scikit-learn库的初步应用,包括分类与回归。同时也会涉及模型调优与性能评估,以及特征工程中的数据预处理与特征选择。在监督学习的篇章中,我们将逐一介绍决策树、随机森林、逻辑回归、支持向量机以及神经网络等算法,以及非监督学习中的聚类与降维方法。此外,我们还将涉及基于Python的自然语言处理入门、文本分类与情感分析、时间序列分析与预测、集成学习与模型融合,以及强化学习的基础概念与实践。通过本专栏,读者将全面掌握Python机器学习的基础知识与实际应用技能,为日后在机器学习领域深入学习打下坚实的基础。
最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

【KEBA机器人高级攻略】:揭秘行业专家的进阶技巧

![KEBA机器人](https://top3dshop.ru/image/data/articles/reviews_3/arm-robots-features-and-applications/image19.jpg) # 摘要 本论文对KEBA机器人进行全面的概述与分析,从基础知识到操作系统深入探讨,特别关注其启动、配置、任务管理和网络连接的细节。深入讨论了KEBA机器人的编程进阶技能,包括高级语言特性、路径规划及控制算法,以及机器人视觉与传感器的集成。通过实际案例分析,本文详细阐述了KEBA机器人在自动化生产线、高精度组装以及与人类协作方面的应用和优化。最后,探讨了KEBA机器人集成

【基于IRIG 106-19的遥测数据采集】:最佳实践揭秘

![【基于IRIG 106-19的遥测数据采集】:最佳实践揭秘](https://spectrum-instrumentation.com/media/knowlegde/IRIG-B_M2i_Timestamp_Refclock.webp?id=5086) # 摘要 本文系统地介绍了IRIG 106-19标准及其在遥测数据采集领域的应用。首先概述了IRIG 106-19标准的核心内容,并探讨了遥测系统的组成与功能。其次,深入分析了该标准下数据格式与编码,以及采样频率与数据精度的关系。随后,文章详细阐述了遥测数据采集系统的设计与实现,包括硬件选型、软件框架以及系统优化策略,特别是实时性与可靠

【提升设计的艺术】:如何运用状态图和活动图优化软件界面

![【提升设计的艺术】:如何运用状态图和活动图优化软件界面](https://img.36krcdn.com/20211228/v2_b3c60c24979b447aba512bf9f04cd4f8_img_000) # 摘要 本文系统地探讨了状态图和活动图在软件界面设计中的应用及其理论基础。首先介绍了状态图与活动图的基本概念和组成元素,随后深入分析了在用户界面设计中绘制有效状态图和活动图的实践技巧。文中还探讨了设计原则,并通过案例分析展示了如何将这些图表有效地应用于界面设计。文章进一步讨论了状态图与活动图的互补性和结合使用,以及如何将理论知识转化为实践中的设计过程。最后,展望了面向未来的软

台达触摸屏宏编程故障不再难:5大常见问题及解决策略

![触摸屏宏编程](https://wpcontent.innovanathinklabs.com/blog_innovana/wp-content/uploads/2021/08/18153310/How-to-download-hid-compliant-touch-screen-driver-Windows-10.jpg) # 摘要 台达触摸屏宏编程是一种为特定自动化应用定制界面和控制逻辑的有效技术。本文从基础概念开始介绍,详细阐述了台达触摸屏宏编程语言的特点、环境设置、基本命令及结构。通过分析常见故障类型和诊断方法,本文深入探讨了故障产生的根源,包括语法和逻辑错误、资源限制等。针对这

构建高效RM69330工作流:集成、测试与安全性的终极指南

![构建高效RM69330工作流:集成、测试与安全性的终极指南](https://ares.decipherzone.com/blog-manager/uploads/ckeditor_JUnit%201.png) # 摘要 本论文详细介绍了RM69330工作流的集成策略、测试方法论以及安全性强化,并展望了其高级应用和未来发展趋势。首先概述了RM69330工作流的基础理论与实践,并探讨了与现有系统的兼容性。接着,深入分析了数据集成的挑战、自动化工作流设计原则以及测试的规划与实施。文章重点阐述了工作流安全性设计原则、安全威胁的预防与应对措施,以及持续监控与审计的重要性。通过案例研究,展示了RM

Easylast3D_3.0速成课:5分钟掌握建模秘籍

![Easylast3D_3.0速成课:5分钟掌握建模秘籍](https://forums.autodesk.com/t5/image/serverpage/image-id/831536i35D22172EF71BEAC/image-size/large?v=v2&px=999) # 摘要 Easylast3D_3.0是业界领先的三维建模软件,本文提供了该软件的全面概览和高级建模技巧。首先介绍了软件界面布局、基本操作和建模工具,然后深入探讨了材质应用、曲面建模以及动画制作等高级功能。通过实际案例演练,展示了Easylast3D_3.0在产品建模、角色创建和场景构建方面的应用。此外,本文还讨

【信号完整性分析速成课】:Cadence SigXplorer新手到专家必备指南

![Cadence SigXplorer 中兴 仿真 教程](https://img-blog.csdnimg.cn/d8fb15e79b5f454ea640f2cfffd25e7c.png) # 摘要 本论文旨在系统性地介绍信号完整性(SI)的基础知识,并提供使用Cadence SigXplorer工具进行信号完整性分析的详细指南。首先,本文对信号完整性的基本概念和理论进行了概述,为读者提供必要的背景知识。随后,重点介绍了Cadence SigXplorer界面布局、操作流程和自定义设置,以及如何优化工作环境以提高工作效率。在实践层面,论文详细解释了信号完整性分析的关键概念,包括信号衰

高速信号处理秘诀:FET1.1与QFP48 MTT接口设计深度剖析

![高速信号处理秘诀:FET1.1与QFP48 MTT接口设计深度剖析](https://www.analogictips.com/wp-content/uploads/2021/07/EEWorld_BB_blog_noise_1f-IV-Figure-2-1024x526.png) # 摘要 高速信号处理与接口设计在现代电子系统中起着至关重要的作用,特别是在数据采集、工业自动化等领域。本文首先概述了高速信号处理与接口设计的基本概念,随后深入探讨了FET1.1接口和QFP48 MTT接口的技术细节,包括它们的原理、硬件设计要点、软件驱动实现等。接着,分析了两种接口的协同设计,包括理论基础、

【MATLAB M_map符号系统】:数据点创造性表达的5种方法

![MATLAB M_map 中文说明书](https://img-blog.csdnimg.cn/img_convert/d0d39b2cc2207a26f502b976c014731b.png) # 摘要 本文详细介绍了M_map符号系统的基本概念、安装步骤、符号和映射机制、自定义与优化方法、数据点创造性表达技巧以及实践案例分析。通过系统地阐述M_map的坐标系统、个性化符号库的创建、符号视觉效果和性能的优化,本文旨在提供一种有效的方法来增强地图数据的可视化表现力。同时,文章还探讨了M_map在科学数据可视化、商业分析及教育领域的应用,并对其进阶技巧和未来的发展趋势提出了预测和建议。

物流监控智能化:Proton-WMS设备与传感器集成解决方案

![Proton-WMS操作手册](https://image.evget.com/2020/10/16/16liwbzjrr4pxlvm9.png) # 摘要 物流监控智能化是现代化物流管理的关键组成部分,有助于提高运营效率、减少错误以及提升供应链的透明度。本文概述了Proton-WMS系统的架构与功能,包括核心模块划分和关键组件的作用与互动,以及其在数据采集、自动化流程控制和实时监控告警系统方面的实际应用。此外,文章探讨了设备与传感器集成技术的原理、兼容性考量以及解决过程中的问题。通过分析实施案例,本文揭示了Proton-WMS集成的关键成功要素,并讨论了未来技术发展趋势和系统升级规划,