OpenCV霍夫圆检测Python实战:图像中圆形物体识别与定位,快速上手

发布时间: 2024-08-12 18:16:00 阅读量: 35 订阅数: 36
![OpenCV霍夫圆检测Python实战:图像中圆形物体识别与定位,快速上手](https://i2.hdslb.com/bfs/archive/59236772f69f5514a6472a3179fd891bf19c24c5.png@960w_540h_1c.webp) # 1. OpenCV霍夫圆检测基础 霍夫变换是一种强大的计算机视觉技术,用于检测图像中的特定形状。霍夫圆检测是霍夫变换的一种特殊应用,专门用于检测圆形物体。它是一种鲁棒且高效的算法,在各种应用中得到了广泛使用。 霍夫圆检测算法的基本原理是将图像中的每个像素映射到一个参数空间,其中每个参数都表示一个可能的圆。然后,算法计算每个参数空间中的累加器值,该值表示该参数对应的圆在图像中出现的次数。最后,算法通过查找累加器值最大的参数来检测圆形物体。 # 2. 霍夫圆检测算法原理 ### 2.1 霍夫变换概述 霍夫变换是一种用于图像处理和计算机视觉中的特征检测算法。它通过将图像中的像素点映射到参数空间中的曲线来检测特定的形状。霍夫变换最常用于检测直线和圆形等简单形状。 对于圆形检测,霍夫变换将图像中的每个像素点映射到一个三维参数空间,其中三个参数分别表示圆心的x坐标、y坐标和半径。如果图像中存在一个圆形,那么在参数空间中将形成一个峰值,该峰值对应于该圆形的参数。 ### 2.2 霍夫圆检测原理 霍夫圆检测算法的原理如下: 1. **边缘检测:**首先,对图像进行边缘检测,以提取图像中的边缘信息。 2. **参数空间累加:**对于图像中的每个边缘点,计算其可能属于的所有圆的参数,并将其累加到参数空间中对应的单元格中。 3. **局部极大值检测:**在参数空间中寻找局部极大值,这些极大值对应于图像中存在的圆形。 4. **圆形拟合:**使用最小二乘法或其他方法拟合出圆形。 **代码块:** ```python import cv2 import numpy as np def hough_circle_detection(image): # 边缘检测 edges = cv2.Canny(image, 100, 200) # 参数空间累加 accumulator = np.zeros((image.shape[0], image.shape[1], 256), dtype=np.uint8) for y in range(image.shape[0]): for x in range(image.shape[1]): if edges[y, x] > 0: for r in range(1, 256): for theta in range(0, 360): a = x - r * np.cos(theta * np.pi / 180) b = y - r * np.sin(theta * np.pi / 180) accumulator[int(a), int(b), r] += 1 # 局部极大值检测 circles = [] for y in range(image.shape[0]): for x in range(image.shape[1]): for r in range(1, 256): if accumulator[y, x, r] > 100: circles.append((x, y, r)) # 圆形拟合 circles = cv2.HoughCircles(image, cv2.HOU ```
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

docx
import cv2 as cv import numpy as np def hough_circle(image): #因为霍夫检测对噪声很明显,所以需要先滤波一下。 dst =cv.pyrMeanShiftFiltering(image,10,100) cimage=cv.cvtColor(dst,cv.COLOR_BGR2GRAY) circles = cv.HoughCircles(cimage,cv.HOUGH_GRADIENT,1,40,param1=40,param2=29,minRadius=30,maxRadius=0) #把circles包含的圆心和半径的值变为整数 circles = np.uint16(np.around(circles)) for i in circles[0]: cv.circle(image,(i[0],i[1]),i[2],(0,255,0),3) cv.imshow("circle",image) src = cv.imread("E:/opencv/picture/coins.jpg") cv.imshow("inital_window",src) hough_circle(src) cv.waitKey(0) cv.destroyAllWindows() 霍夫圆变换的基本思路是认为图像上每一个非零像素点都有可能是一个潜在的圆上的一点, 跟霍夫线变换一样,也是通过投票,生成累积坐标平面,设置一个累积权重来定位圆。 在笛卡尔坐标系中圆的方程为: 其中(a,b)是圆心,r是半径,也可以表述为: 即 在笛卡尔的xy坐标系中经过某一点的所有圆映射到abr坐标系中就是一条三维的曲线: 经过xy坐标系中所有的非零像素点的所有圆就构成了abr坐标系中很多条三维的曲线。 在xy坐标系中同一个圆上的所有点的圆方程是一样的,它们映射到abr坐标系中的是同一个点,所以在abr坐标系中该点就应该有圆的总像素N0个曲线相交。 通过判断abr中每一点的相交(累积)数量,大于一定阈值的点就认为是圆。 以上是标准霍夫圆变换实现算法。 问题是它的累加到一个三维的空间,意味着比霍夫线变换需要更多的计算消耗。 Opencv霍夫圆变换对标准霍夫圆变换做了运算上的优化。 它采用的是“霍夫梯度法”。它的检测思路是去遍历累加所有非零点对应的圆心,对圆心进行考量。 如何定位圆心呢?圆心一定是在圆上的每个点的模向量上,即在垂直于该点并且经过该点的切线的垂直线上,这些圆上的模向量的交点就是圆心。 霍夫梯度法就是要去查找这些圆心,根据该“圆心”上模向量相交数量的多少,根据阈值进行最终的判断。 bilibili: 注意: 1.OpenCV的霍夫圆变换函数原型为:HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius]]]]]) -> circles image参数表示8位单通道灰度输入图像矩阵。 method参数表示圆检测方法,目前唯一实现的方法是HOUGH_GRADIENT。 dp参数表示累加器与原始图像相比的分辨率的反比参数。例如,如果dp = 1,则累加器具有与输入图像相同的分辨率。如果dp=2,累加器分辨率是元素图像的一半,宽度和高度也缩减为原来的一半。 minDist参数表示检测到的两个圆心之间的最小距离。如果参数太小,除了真实的一个圆圈之外,可能错误地检测到多个相邻的圆圈。如果太大,可能会遗漏一些圆圈。 circles参数表示检测到的圆的输出向量,向量内第一个元素是圆的横坐标,第二个是纵坐标,第三个是半径大小。 param1参数表示Canny边缘检测的高阈值,低阈值会被自动置为高阈值的一半。 param2参数表示圆心检测的累加阈值,参数值越小,可以检测越多的假圆圈,但返回的是与较大累加器值对应的圆圈。 minRadius参数表示检测到的圆的最小半径。 maxRadius参数表示检测到的圆的最大半径。 2.OpenCV画圆的circle函数原型:circle(img, center, radius, color[, thickness[, lineType[, shift]]]) -> img img参数表示源图像。 center参数表示圆心坐标。 radius参数表示圆的半径。 color参数表示设定圆的颜色。 thickness参数:如果是正数,表示圆轮廓的粗细程度。如果是负数,表示要绘制实心圆。 lineType参数表示圆线条的类型。 shift参数表示圆心坐标和半径值中的小数位数。

张_伟_杰

人工智能专家
人工智能和大数据领域有超过10年的工作经验,拥有深厚的技术功底,曾先后就职于多家知名科技公司。职业生涯中,曾担任人工智能工程师和数据科学家,负责开发和优化各种人工智能和大数据应用。在人工智能算法和技术,包括机器学习、深度学习、自然语言处理等领域有一定的研究
专栏简介
OpenCV霍夫圆检测专栏汇集了丰富的教程和指南,帮助您掌握图像中圆形目标的定位技术。通过Python实现的霍夫圆检测算法,您可以轻松识别和定位图像中的圆形,提升图像处理效率。专栏内容涵盖了霍夫圆检测的原理、实现步骤、实战应用和疑难解答,从基础到进阶,循序渐进,让您快速上手图像圆形目标定位技术。无论您是图像处理新手还是经验丰富的开发者,都能在专栏中找到适合自己的学习资源,提升图像识别能力,解决图像处理难题。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

Pandas数据转换:重塑、融合与数据转换技巧秘籍

![Pandas数据转换:重塑、融合与数据转换技巧秘籍](https://c8j9w8r3.rocketcdn.me/wp-content/uploads/2016/03/pandas_aggregation-1024x409.png) # 1. Pandas数据转换基础 在这一章节中,我们将介绍Pandas库中数据转换的基础知识,为读者搭建理解后续章节内容的基础。首先,我们将快速回顾Pandas库的重要性以及它在数据分析中的核心地位。接下来,我们将探讨数据转换的基本概念,包括数据的筛选、清洗、聚合等操作。然后,逐步深入到不同数据转换场景,对每种操作的实际意义进行详细解读,以及它们如何影响数

Keras注意力机制:构建理解复杂数据的强大模型

![Keras注意力机制:构建理解复杂数据的强大模型](https://img-blog.csdnimg.cn/direct/ed553376b28447efa2be88bafafdd2e4.png) # 1. 注意力机制在深度学习中的作用 ## 1.1 理解深度学习中的注意力 深度学习通过模仿人脑的信息处理机制,已经取得了巨大的成功。然而,传统深度学习模型在处理长序列数据时常常遇到挑战,如长距离依赖问题和计算资源消耗。注意力机制的提出为解决这些问题提供了一种创新的方法。通过模仿人类的注意力集中过程,这种机制允许模型在处理信息时,更加聚焦于相关数据,从而提高学习效率和准确性。 ## 1.2

【数据集加载与分析】:Scikit-learn内置数据集探索指南

![Scikit-learn基础概念与常用方法](https://analyticsdrift.com/wp-content/uploads/2021/04/Scikit-learn-free-course-1024x576.jpg) # 1. Scikit-learn数据集简介 数据科学的核心是数据,而高效地处理和分析数据离不开合适的工具和数据集。Scikit-learn,一个广泛应用于Python语言的开源机器学习库,不仅提供了一整套机器学习算法,还内置了多种数据集,为数据科学家进行数据探索和模型验证提供了极大的便利。本章将首先介绍Scikit-learn数据集的基础知识,包括它的起源、

NumPy在金融数据分析中的应用:风险模型与预测技术的6大秘籍

![NumPy在金融数据分析中的应用:风险模型与预测技术的6大秘籍](https://d31yv7tlobjzhn.cloudfront.net/imagenes/990/large_planilla-de-excel-de-calculo-de-valor-en-riesgo-simulacion-montecarlo.png) # 1. NumPy基础与金融数据处理 金融数据处理是金融分析的核心,而NumPy作为一个强大的科学计算库,在金融数据处理中扮演着不可或缺的角色。本章首先介绍NumPy的基础知识,然后探讨其在金融数据处理中的应用。 ## 1.1 NumPy基础 NumPy(N

PyTorch超参数调优:专家的5步调优指南

![PyTorch超参数调优:专家的5步调优指南](https://img-blog.csdnimg.cn/20210709115730245.png) # 1. PyTorch超参数调优基础概念 ## 1.1 什么是超参数? 在深度学习中,超参数是模型训练前需要设定的参数,它们控制学习过程并影响模型的性能。与模型参数(如权重和偏置)不同,超参数不会在训练过程中自动更新,而是需要我们根据经验或者通过调优来确定它们的最优值。 ## 1.2 为什么要进行超参数调优? 超参数的选择直接影响模型的学习效率和最终的性能。在没有经过优化的默认值下训练模型可能会导致以下问题: - **过拟合**:模型在

【线性回归模型故障诊断】:识别并解决常见问题的高级技巧

![【线性回归模型故障诊断】:识别并解决常见问题的高级技巧](https://community.alteryx.com/t5/image/serverpage/image-id/71553i43D85DE352069CB9?v=v2) # 1. 线性回归模型简介 线性回归模型是一种基础的统计学习方法,广泛应用于预测和建模领域。在机器学习和数据分析的初期阶段,线性回归是一个必不可少的学习点,其核心思想是使用一个线性方程来描述两个或多个变量之间的关系。本章将对线性回归进行简单的介绍,为后续章节的深入探讨奠定基础。 ## 线性回归模型的应用场景 线性回归模型常用于估计连续数值型数据的关系,比

正态分布与信号处理:噪声模型的正态分布应用解析

![正态分布](https://img-blog.csdnimg.cn/38b0b6e4230643f0bf3544e0608992ac.png) # 1. 正态分布的基础理论 正态分布,又称为高斯分布,是一种在自然界和社会科学中广泛存在的统计分布。其因数学表达形式简洁且具有重要的统计意义而广受关注。本章节我们将从以下几个方面对正态分布的基础理论进行探讨。 ## 正态分布的数学定义 正态分布可以用参数均值(μ)和标准差(σ)完全描述,其概率密度函数(PDF)表达式为: ```math f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e

数据清洗的概率分布理解:数据背后的分布特性

![数据清洗的概率分布理解:数据背后的分布特性](https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-022-10145-8/MediaObjects/11222_2022_10145_Figa_HTML.png) # 1. 数据清洗的概述和重要性 数据清洗是数据预处理的一个关键环节,它直接关系到数据分析和挖掘的准确性和有效性。在大数据时代,数据清洗的地位尤为重要,因为数据量巨大且复杂性高,清洗过程的优劣可以显著影响最终结果的质量。 ## 1.1 数据清洗的目的 数据清洗

从Python脚本到交互式图表:Matplotlib的应用案例,让数据生动起来

![从Python脚本到交互式图表:Matplotlib的应用案例,让数据生动起来](https://opengraph.githubassets.com/3df780276abd0723b8ce60509bdbf04eeaccffc16c072eb13b88329371362633/matplotlib/matplotlib) # 1. Matplotlib的安装与基础配置 在这一章中,我们将首先讨论如何安装Matplotlib,这是一个广泛使用的Python绘图库,它是数据可视化项目中的一个核心工具。我们将介绍适用于各种操作系统的安装方法,并确保读者可以无痛地开始使用Matplotlib

【品牌化的可视化效果】:Seaborn样式管理的艺术

![【品牌化的可视化效果】:Seaborn样式管理的艺术](https://aitools.io.vn/wp-content/uploads/2024/01/banner_seaborn.jpg) # 1. Seaborn概述与数据可视化基础 ## 1.1 Seaborn的诞生与重要性 Seaborn是一个基于Python的统计绘图库,它提供了一个高级接口来绘制吸引人的和信息丰富的统计图形。与Matplotlib等绘图库相比,Seaborn在很多方面提供了更为简洁的API,尤其是在绘制具有多个变量的图表时,通过引入额外的主题和调色板功能,大大简化了绘图的过程。Seaborn在数据科学领域得

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )