【基础】Python数据建模基础与常用算法介绍

发布时间: 2024-06-24 18:31:48 阅读量: 83 订阅数: 136
PDF

数据模型及数据建模的基础知识

![【基础】Python数据建模基础与常用算法介绍](https://img-blog.csdnimg.cn/img_convert/60e6c3592f764452dc0d63b9f5c697ea.png) # 1. Python数据建模基础** 数据建模是利用数据创建表示现实世界对象的抽象的过程。Python 是一种流行的编程语言,它提供了广泛的库和工具,使数据建模变得容易。 数据建模涉及几个关键步骤,包括: * **数据收集:**收集相关数据,包括结构化和非结构化数据。 * **数据预处理:**清理和转换数据,使其适合建模。 * **模型选择:**根据数据和建模目标选择合适的算法。 * **模型训练:**使用训练数据训练模型。 * **模型评估:**使用测试数据评估模型的性能。 # 2.1 监督学习算法 监督学习算法是一种机器学习算法,它使用带标签的数据集进行训练。标签表示每个数据点的正确输出。通过学习数据集中的模式,监督学习算法可以预测新数据的输出。 ### 2.1.1 线性回归 线性回归是一种监督学习算法,用于预测连续变量(称为因变量)与一个或多个自变量之间的线性关系。它通过最小化预测值和实际值之间的平方差来拟合一条直线到数据点。 **代码块:** ```python import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression # 加载数据 data = pd.read_csv('data.csv') # 准备特征和目标变量 X = data[['feature1', 'feature2']] y = data['target'] # 创建和训练模型 model = LinearRegression() model.fit(X, y) # 预测新数据 new_data = pd.DataFrame({'feature1': [10], 'feature2': [20]}) prediction = model.predict(new_data) ``` **逻辑分析:** * `LinearRegression()` 类创建了一个线性回归模型。 * `fit()` 方法使用训练数据训练模型。 * `predict()` 方法使用训练后的模型对新数据进行预测。 **参数说明:** * `feature1` 和 `feature2` 是自变量。 * `target` 是因变量。 * `new_data` 是要进行预测的新数据。 ### 2.1.2 逻辑回归 逻辑回归是一种监督学习算法,用于预测二分类问题的概率。它通过将输入数据映射到一个 S 形函数(称为逻辑函数)来计算每个类别的概率。 **代码块:** ```python import numpy as np import pandas as pd from sklearn.linear_model import LogisticRegression # 加载数据 data = pd.read_csv('data.csv') # 准备特征和目标变量 X = data[['feature1', 'feature2']] y = data['target'] # 创建和训练模型 model = LogisticRegression() model.fit(X, y) # 预测新数据 new_data = pd.DataFrame({'feature1': [10], 'feature2': [20]}) prediction = model.predict_proba(new_data) ``` **逻辑分析:** * `LogisticRegression()` 类创建了一个逻辑回归模型。 * `fit()` 方法使用训练数据训练模型。 * `predict_proba()` 方法使用训练后的模型对新数据进行预测,并返回每个类别的概率。 **参数说明:** * `feature1` 和 `feature2` 是自变量。 * `target` 是因变量。 * `new_data` 是要进行预测的新数据。 ### 2.1.3 决策树 决策树是一种监督学习算法,它通过一系列规则对数据进行分而治之。它将数据点递归地划分为更小的子集,直到每个子集都包含相同类别的所有数据点。 **代码块:** ```python import numpy as np import pandas as pd from sklearn.tree import DecisionTreeClassifier # 加载数据 data = pd.read_csv('data.csv') # 准备特征和目标变量 X = d ```
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

李_涛

知名公司架构师
拥有多年在大型科技公司的工作经验,曾在多个大厂担任技术主管和架构师一职。擅长设计和开发高效稳定的后端系统,熟练掌握多种后端开发语言和框架,包括Java、Python、Spring、Django等。精通关系型数据库和NoSQL数据库的设计和优化,能够有效地处理海量数据和复杂查询。
专栏简介
本专栏汇集了全面的 Python 数据分析与可视化教程,涵盖从基础到进阶的各个方面。专栏分为基础篇和进阶篇,提供循序渐进的学习路径。基础篇包括数据分析与可视化入门、数据结构与类型、NumPy 库、Pandas 库、数据清洗、Matplotlib 基础和 Seaborn 库实践。进阶篇深入探讨数据探索性分析、数据预处理、数据聚合、时间序列分析、数据采样、数据合并、数据转换、数据统计描述、数据特征工程、数据建模、模型评估、交互式可视化、数据分析案例分析、数据清洗与预处理技巧、数据探索性分析、数据分组与聚合分析、数据合并与连接、数据筛选与过滤、数据转换与重塑、时间序列数据处理、数据可视化入门、数据可视化进阶、数据可视化艺术、多图合成与子图布局、数据可视化互动性、数据可视化输出、数据可视化实例分析、数据分析案例解析、数据分析工具箱、数据分析实用技巧、数据分析项目实战、高级数据处理技巧、数据透视表与交叉分析、高级数据清洗、时间序列分析、高级数据可视化、数据可视化优化、交互式可视化、数据分析与机器学习集成、数据分析管道与自动化、高级数据合并与连接、数据处理性能优化、数据采样与重采样、数据处理中的异常值检测与处理技巧、数据处理中的缺失值处理策略与方法、数据处理中的数据转换与规范化技术、数据分析中的特征工程与衍生变量创建、数据分析中的模型评估与交叉验证技巧、数据分析中的模型解释与可解释性分析、数据分析中的结果可视化与报告生成技巧、数据分析中的项目部署与实际应用案例。此外,专栏还提供了丰富的实战演练,涵盖数据爬取、聚合、分组、时间序列分析、金融、医疗、市场营销、社交媒体、旅游、环境、物流、农业和体育等领域的实际数据分析案例。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

【云原生架构速成课】:5分钟内掌握可扩展服务构建术

![【云原生架构速成课】:5分钟内掌握可扩展服务构建术](https://file.sgpjbg.com/fileroot_temp1/2022-7/21/4badfbcf-6837-4bc9-a7f7-1c076c76ff90/4badfbcf-6837-4bc9-a7f7-1c076c76ff903.gif) # 摘要 云原生架构是构建现代分布式系统的基石,旨在提升应用的可移植性、可伸缩性和弹性。本文首先概述了云原生架构的基本概念及其核心技术理论,包括容器化技术、微服务架构和服务网格等,并深入探讨了容器技术如Docker的工作原理。随后,文章介绍了云原生架构设计实践,包括微服务架构设计、

【Origin图表美化技巧】:非设计师必看!3招提升图表美感与数据屏蔽技术

![屏蔽数据-比较详细的Origin入门教程](https://images.sftcdn.net/images/t_app-cover-l,f_auto/p/09f59a84-96d1-11e6-96ed-00163ec9f5fa/4074650057/ea-origin-Origin-Windows.jpg) # 摘要 图表美化在科研与商业领域中扮演着至关重要的角色,不仅能够提高数据的可读性,还可以增强信息的传递效果。本文首先讨论了图表美化的基本原理及其重要性,随后深入探讨了Origin软件的图表创建、自定义设置及色彩搭配技巧。在实践应用方面,文章介绍了数据的视觉表现和交互性增强方法,以

美的中央空调多联机故障排除手册:维护与技术指南全攻略

![美的中央空调多联机故障排除手册:维护与技术指南全攻略](https://machinelounge.com/wp-content/uploads/2023/05/Split-AC-not-cooling-but-fan-is-running-960x565.png) # 摘要 本文系统地介绍了中央空调多联机的基础知识、故障诊断理论、排查实践以及维护技术的高级应用。文章从理论分析到实际操作,详细探讨了多联机系统的故障类型、诊断方法、修复技巧和预防策略。同时,针对系统优化、节能减排、客户服务和技术支持进行了深入研究。最后,本文展望了未来多联机技术的发展趋势,重点讨论了新兴技术的应用前景、行业

EN 301489-3新动态:202X年最新更新要点解读

# 摘要 本文全面介绍了EN 301489-3标准的最新更新,详细探讨了更新的背景、目的、核心要点以及对行业的潜在影响。重点解析了技术实施指南,包括新增测试要求的解析和应对技术参数调整的策略。通过案例研究,分析了典型产品案例和企业实施新标准的经验分享,以及行业趋势和未来展望。文章最后提出了企业合规的综合建议和对监管机构的政策建议,旨在帮助相关企业适应新标准,合理规划合规策略,并为监管机构提供政策制定的参考。 # 关键字 EN 301489-3标准;技术参数调整;测试要求;合规成本;认证流程;行业趋势 参考资源链接:[EN 301489-3: 欧洲电磁兼容标准详解](https://wenk

富士施乐DocuCentre S2011使用秘籍:基础到高级操作全面指南

![Fuji Xerox富士施乐DocuCentre S2011基本说明书.pdf](http://www.kaixinit.com/wp-content/uploads/2022/03/S2011DY03.png) # 摘要 本文对富士施乐DocuCentre S2011多功能一体机进行了全面介绍,涵盖了从基础的硬件连接、设备设置到进阶的文档管理技巧。详细阐述了设备的物理安装、网络连接以及首次设置向导和操作面板导航的步骤。进一步探讨了文档分拣、用户安全管理和节能环保设置等进阶技巧。故障排除和维护指南部分则提供了常见问题的诊断解决方法、设备维护清洁和软件更新的详细操作。此外,文章还介绍了Do

控制工程创新思维

![自动控制原理课程设计串联滞后校正matlab](http://i2.hdslb.com/bfs/archive/c164137ad755eddc56872eba11b27eb0d8fe5612.jpg) # 摘要 控制工程是现代工业和技术发展不可或缺的领域,它不仅确保了系统的精确与稳定运行,而且在自动化和智能化技术中发挥着关键作用。本文旨在深入解析控制工程的基本理论及其在不同领域的应用。首先,介绍控制系统的概念、分类、动态响应和稳定性。接着,探讨控制理论中的数学模型,包括传递函数、状态空间模型以及线性和非线性系统的建模方法。文章还将讨论控制工程中常见的关键技术,如PID控制器、模型预测控

【BTS6143D应用实践案例】:揭秘功率控制在实际中的巧妙运用

![【BTS6143D应用实践案例】:揭秘功率控制在实际中的巧妙运用](https://media.product.which.co.uk/prod/images/original/gm-d0ce0b0f-73a6-4092-b6a8-77894118192b-dishwasher-uk-energy-labeladvice.jpg) # 摘要 本文系统性地介绍了功率控制的基础知识,并对BTS6143D芯片进行详细的技术解析,探讨了其技术规格、工作原理以及集成的保护功能。通过分析电机驱动控制、电源管理和汽车电子等应用案例,展示了BTS6143D在实际功率控制应用中的效能和优势。文章进一步介绍

【Parker Compax3完全指南】:新手至专家的必学调试与优化技巧

# 摘要 Parker Compax3作为一款先进的自动化设备,对于工业领域具有重要意义。本文从入门简介开始,逐步深入到基础调试技术、系统优化实践、高级调试技巧,以及自动化与维护,全面展示了如何有效地操作和优化Parker Compax3。通过对该设备的体系结构、调试环境、性能监控、参数调整、故障诊断与排除、高级调试工具应用以及自动化脚本编写的介绍,本文旨在为工程师提供一套完整的操作指南和故障解决方案,同时强调系统维护和更新的重要性,以保障工业设备长期稳定运行。 # 关键字 Parker Compax3;调试技术;系统优化;故障诊断;自动化脚本;系统维护 参考资源链接:[Parker Co

【Informatica邮件动态化】:使用变量和表达式打造个性化邮件模板

![【Informatica邮件动态化】:使用变量和表达式打造个性化邮件模板](https://global.discourse-cdn.com/uipath/original/3X/6/a/6a0173a119c437d2da73ec2fc6544adf6ac0b70f.png) # 摘要 本文深入探讨了Informatica邮件动态化的全过程,从基础的变量和表达式理解到个性化邮件模板的构建,再到邮件动态化的高级技巧和实践案例分析。文中详细阐述了变量和表达式在邮件模板中的应用,如何通过使用这些工具定制邮件内容,并进行有效的测试和验证。进一步,本文介绍了高级表达式的技巧、外部数据源的集成,以

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )