Java设计模式总结与常见设计模式实例

发布时间: 2024-01-12 17:15:00 阅读量: 36 订阅数: 34
# 1. 导论 ## 1.1 引言 在软件开发过程中,设计模式是一种反复出现的问题的解决方案。它是经过反复的使用、验证并最终被广泛接受的。设计模式不是可以直接转化为代码的,而是一种解决问题的思路。通过它可以实现代码的重用,提高代码的可读性和可维护性。 ## 1.2 什么是设计模式 设计模式是在软件工程中针对特定问题的可重用解决方案。它描述了在特定环境下,可以使用的解决方案,并解释了解决方案的优缺点以及使用时机。 ## 1.3 设计模式的重要性 设计模式能够提高代码的可重用性和可维护性,减少了重复劳动,增加了代码的灵活性,提高了代码的可读性以及可理解性。它们是软件工程师在工作中不可或缺的工具。 ## 1.4 设计模式的分类 设计模式可以分为创建型模式、结构型模式、行为型模式和其他重要设计模式。这些分类有助于理解和学习不同类型的设计模式,以便更好地应用于实际的软件开发中。 # 2. 创建型模式 #### 2.1 简单工厂模式 ##### 2.1.1 概述 简单工厂模式是指由一个工厂对象决定创建出哪一种产品类的实例。其实质是通过一个共同的接口来创建对象。该模式中定义一个创建对象的类,由这个类来封装实例化对象的代码。 ##### 2.1.2 示例代码 以下是一个简单工厂模式的示例代码: ```java // 创建产品接口 interface Product { void show(); } // 具体产品类A class ConcreteProductA implements Product { @Override public void show() { System.out.println("This is product A."); } } // 具体产品类B class ConcreteProductB implements Product { @Override public void show() { System.out.println("This is product B."); } } // 简单工厂类 class SimpleFactory { public Product createProduct(String type) { if ("A".equals(type)) { return new ConcreteProductA(); } else if ("B".equals(type)) { return new ConcreteProductB(); } return null; } } // 客户端 public class Client { public static void main(String[] args) { SimpleFactory factory = new SimpleFactory(); Product productA = factory.createProduct("A"); productA.show(); } } ``` ##### 2.1.3 应用场景与优缺点 **应用场景:** - 当创建对象的逻辑较为简单,不需要太复杂的逻辑处理时 - 当客户端只需要知道所需产品对应的参数,而不关心创建细节时 **优点:** - 封装了对象的创建过程,客户端无需关心具体的实例化逻辑 - 符合单一职责原则,将客户端和具体实现解耦 **缺点:** - 工厂类集中了所有的产品创建逻辑,一旦需要添加新产品,就需要修改工厂类的逻辑,违反了开闭原则。 # 3. 结构型模式 #### 3.1 适配器模式 - 3.1.1 概述 适配器模式是一种结构型设计模式,它允许接口不兼容的对象能够相互合作。适配器充当两个不兼容接口之间的桥梁,将一个对象的接口转换成客户端希望的另一个接口,使得原本因接口不匹配而无法在一起工作的两个类能够协同工作。 - 3.1.2 示例代码 ```java // 目标接口 interface Target { void request(); } // 需要适配的类 class Adaptee { public void specificRequest() { System.out.println("Adaptee's specificRequest method is called."); } } // 适配器 class Adapter implements Target { private Adaptee adaptee; public Adapter(Adaptee adaptee) { this.adaptee = adaptee; } @Override public void request() { adaptee.specificRequest(); } } // 客户端代码 public class Client { public static void main(String[] args) { Adaptee adaptee = new Adaptee(); Target target = new Adapter(adaptee); target.request(); } } ``` - 3.1.3 应用场景与优缺点 - 应用场景:当系统需要使用现有的类,但这些类的接口不符合系统的需要时,可以使用适配器模式。比如在系统中引入一个新的接口,想要与已有的类一起工作,可以定义一个包装类来适配已有的类。 - 优点:可以让任何两个没有关联的类一起运行;增加了类的透明性和复用性;灵活性好。 - 缺点:过多地使用适配器会让系统非常零乱,不易清晰地进行整体把握。 # 4. 行为型模式 #### 4.1 策略模式 ##### 4.1.1 概述 策略模式定义了一系列算法,将每个算法封装起来,并使它们可以相互替换。通常它将算法的使用和实现分离,使得算法可以在不影响客户端的情况下发生变化。 ##### 4.1.2 示例代码 ```python # 策略接口 class Strategy: def do_operation(self, num1, num2): pass # 具体策略类 class OperationAdd(Strategy): def do_operation(self, num1, num2): return num1 + num2 class OperationSubtract(Strategy): def do_operation(self, num1, num2): return num1 - num2 # 环境类 class Context: def __init__(self, strategy): self.strategy = strategy def execute_strategy(self, num1, num2): return self.strategy.do_operation(num1, num2) # 使用 context = Context(OperationAdd()) print("10 + 5 =", context.execute_strategy(10, 5)) # 输出:10 + 5 = 15 context = Context(OperationSubtract()) print("10 - 5 =", context.execute_strategy(10, 5)) # 输出:10 - 5 = 5 ``` ##### 4.1.3 应用场景与优缺点 - **应用场景**:当一个系统需要动态地在几种算法中切换时,可使用策略模式;多个类只有算法不同的情况下,可使用策略模式。 - **优点**: - 相互替换的算法可以独立于其使用者而变化。 - 可以减少大量的if-else语句。 - **缺点**:客户端必须知道所有的策略类,并自行决定使用哪一个策略类,增加了代码的复杂程度。 #### 4.2 观察者模式 ##### 4.2.1 概述 观察者模式定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象,当主题对象状态发生变化时,会通知所有观察者对象,使它们能够自动更新。 ##### 4.2.2 示例代码 ```java import java.util.ArrayList; import java.util.List; // 主题接口 interface Subject { void registerObserver(Observer observer); void removeObserver(Observer observer); void notifyObservers(); } // 具体主题 class ConcreteSubject implements Subject { private List<Observer> observers = new ArrayList<>(); private int state; @Override public void registerObserver(Observer observer) { observers.add(observer); } @Override public void removeObserver(Observer observer) { observers.remove(observer); } @Override public void notifyObservers() { for (Observer observer : observers) { observer.update(state); } } public void setState(int state) { this.state = state; notifyObservers(); } } ``` ##### 4.2.3 应用场景与优缺点 - **应用场景**:当一个对象的改变需要同时改变其他对象,而且它不知道具体有多少对象有待改变时,可使用观察者模式。 - **优点**: - 观察者和被观察者之间建立了一个抽象的耦合。 - 支持广播通信。 - **缺点**: - 如果一个观察者与主题之间存在循环依赖,可能会导致系统崩溃。 # 5. 其他重要设计模式 #### 5.1 职责链模式 ##### 5.1.1 概述 职责链模式是一种行为设计模式,用于将请求的发送者和接收者解耦,通过多个对象都有机会处理这个请求,直到其中一个对象处理它为止。这种模式可以避免请求的发送者和接收者之间的直接耦合关系。在职责链模式中,请求沿着一个对象链依次传递,直到有一个对象能够处理它为止。 ##### 5.1.2 示例代码 ```java // 定义处理请求的接口 public interface Handler { void setNext(Handler next); void handleRequest(int request); } // 实现处理请求的具体类 public class ConcreteHandler1 implements Handler { private Handler next; public void setNext(Handler next) { this.next = next; } public void handleRequest(int request) { if (request >= 0 && request < 10) { System.out.println("ConcreteHandler1 handled the request"); } else if (next != null) { next.handleRequest(request); } } } public class ConcreteHandler2 implements Handler { private Handler next; public void setNext(Handler next) { this.next = next; } public void handleRequest(int request) { if (request >= 10 && request < 20) { System.out.println("ConcreteHandler2 handled the request"); } else if (next != null) { next.handleRequest(request); } } } ``` ##### 5.1.3 应用场景与优缺点 - **应用场景**:当请求的发送者和接收者之间需要解耦时,可以使用职责链模式。例如,一个采购单的审批流程,不同金额的采购单需要由不同级别的主管来审批。 - **优点**:职责链模式可以降低请求发送者和接收者之间的耦合;可以动态的改变处理链;符合开闭原则,可以很容易地增加或修改处理请求的类。 - **缺点**:对于某些特定的请求可能会导致请求在链条上无法被处理;如果处理链过长或者处理不当,可能会导致性能问题。 #### 5.2 状态模式 ##### 5.2.1 概述 状态模式是一种行为设计模式,用于允许对象在其内部状态改变时改变它的行为。状态模式的关键思想是将对象的行为封装在不同的状态类中,对象的行为随着内部状态的改变而改变。状态模式可以使状态转换的逻辑与状态对象分离,以提高可维护性和可扩展性。 ##### 5.2.2 示例代码 ```python # 定义状态接口 class State: def do_action(self, context): pass # 实现状态类 class StartState(State): def do_action(self, context): print("Player is in start state") context.state = self class StopState(State): def do_action(self, context): print("Player is in stop state") context.state = self # 使用上下文来跟踪状态 class Context: def __init__(self): self.state = None ``` ##### 5.2.3 应用场景与优缺点 - **应用场景**:当对象的行为取决于它的状态,并且在运行时可以根据状态改变行为时,可以考虑使用状态模式。例如,在一个订单状态机中,订单的状态改变会导致不同的行为。 - **优点**:状态模式将与特定状态相关的行为局部化到一个状态中,并且将不同状态的行为分离开来,提高扩展性和可维护性。 - **缺点**:引入了许多小的类,增加了系统的复杂度;不适合小型的状态机。 #### 5.3 解释器模式 ##### 5.3.1 概述 解释器模式是一种行为设计模式,用于定义一门语言的文法,并且利用该解释器来解释句子中的语法,即解释器模式为语言创建解释器,以解释语言中的句子。 ##### 5.3.2 示例代码 ```java // 定义解释器接口 public interface Expression { boolean interpret(String context); } // 实现解释器的具体类 public class TerminalExpression implements Expression { private String data; public TerminalExpression(String data) { this.data = data; } public boolean interpret(String context) { return context.contains(data); } } public class OrExpression implements Expression { private Expression expr1; private Expression expr2; public OrExpression(Expression expr1, Expression expr2) { this.expr1 = expr1; this.expr2 = expr2; } public boolean interpret(String context) { return expr1.interpret(context) || expr2.interpret(context); } } ``` ##### 5.3.3 应用场景与优缺点 - **应用场景**:解释器模式适用于需要解释语言语法或执行脚本的情况。例如,SQL解释器就是一种解释器模式的典型应用。 - **优点**:易于改变和扩展文法,每条文法规则都可以通过继承一个类来进行扩展;易于实现文法,采用解释器模式可以利用面向对象技术比较容易地实现文法。 - **缺点**:对于复杂文法的解释会导致类的膨胀,增加系统的复杂性;文法的改变可能需要修改大量的源代码。 以上是第五章的内容,介绍了职责链模式、状态模式和解释器模式,包括这些模式的概述、示例代码以及应用场景与优缺点。 # 6. 总结与展望 ### 6.1 设计模式的优势 设计模式的使用可以提高代码的可读性和可维护性,能够降低系统的耦合度,增加系统的灵活性和可扩展性。通过设计模式,可以让开发人员更好地理解代码结构,提高代码质量,同时也方便团队间的沟通和合作。 ### 6.2 实际应用案例 设计模式在软件开发中被广泛运用,比如在Spring框架中,使用了大量的设计模式来实现各种功能。另外,在大型系统的开发中,设计模式也扮演着重要的角色,比如MVC模式在Web开发中的应用,以及各种复杂系统中的工厂模式、单例模式、观察者模式等的应用。 ### 6.3 对未来的展望 随着软件开发的不断发展,设计模式也将不断演化和完善。未来,随着新技术的出现和应用场景的不断拓展,设计模式将会更加贴合实际需求,同时也会出现一些新的设计模式来解决新的问题。 ### 6.4 结语 设计模式作为软件开发中的重要组成部分,对于提高代码质量、加快开发速度、降低维护成本都起到了重要作用。在实际开发中,合适地运用设计模式能够让系统更加灵活、可扩展,从而更好地适应未来的需求变化。因此,深入理解和熟练应用设计模式对于软件开发人员来说至关重要。
corwn 最低0.47元/天 解锁专栏
买1年送3个月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

李_涛

知名公司架构师
拥有多年在大型科技公司的工作经验,曾在多个大厂担任技术主管和架构师一职。擅长设计和开发高效稳定的后端系统,熟练掌握多种后端开发语言和框架,包括Java、Python、Spring、Django等。精通关系型数据库和NoSQL数据库的设计和优化,能够有效地处理海量数据和复杂查询。
专栏简介
这篇专栏涵盖了面试官8年的 Java 经验,详细解析了 Java 面试的秘诀。从 Java 基础知识、面向对象编程、集合框架、异常处理、多线程编程、IO 与 NIO、反射机制、网络编程、并发包、JVM 原理、设计模式、Spring 框架、Spring Boot、Spring MVC、MyBatis、MySQL 优化、NoSQL 数据库、Linux 基础知识到 JSON 与 XML 数据格式处理等多个方面进行了深入总结与解析。无论是技术初学者还是有一定经验的开发者都能从中获益,旨在帮助读者掌握 Java 技术的核心知识,并在面试中脱颖而出。
最低0.47元/天 解锁专栏
买1年送3个月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

【R语言数据包mlr的深度学习入门】:构建神经网络模型的创新途径

![【R语言数据包mlr的深度学习入门】:构建神经网络模型的创新途径](https://media.geeksforgeeks.org/wp-content/uploads/20220603131009/Group42.jpg) # 1. R语言和mlr包的简介 ## 简述R语言 R语言是一种用于统计分析和图形表示的编程语言,广泛应用于数据分析、机器学习、数据挖掘等领域。由于其灵活性和强大的社区支持,R已经成为数据科学家和统计学家不可或缺的工具之一。 ## mlr包的引入 mlr是R语言中的一个高性能的机器学习包,它提供了一个统一的接口来使用各种机器学习算法。这极大地简化了模型的选择、训练

R语言文本挖掘实战:社交媒体数据分析

![R语言文本挖掘实战:社交媒体数据分析](https://opengraph.githubassets.com/9df97bb42bb05bcb9f0527d3ab968e398d1ec2e44bef6f586e37c336a250fe25/tidyverse/stringr) # 1. R语言与文本挖掘简介 在当今信息爆炸的时代,数据成为了企业和社会决策的关键。文本作为数据的一种形式,其背后隐藏的深层含义和模式需要通过文本挖掘技术来挖掘。R语言是一种用于统计分析、图形表示和报告的编程语言和软件环境,它在文本挖掘领域展现出了强大的功能和灵活性。文本挖掘,简而言之,是利用各种计算技术从大量的

【R语言caret包多分类处理】:One-vs-Rest与One-vs-One策略的实施指南

![【R语言caret包多分类处理】:One-vs-Rest与One-vs-One策略的实施指南](https://media.geeksforgeeks.org/wp-content/uploads/20200702103829/classification1.png) # 1. R语言与caret包基础概述 R语言作为统计编程领域的重要工具,拥有强大的数据处理和可视化能力,特别适合于数据分析和机器学习任务。本章节首先介绍R语言的基本语法和特点,重点强调其在统计建模和数据挖掘方面的能力。 ## 1.1 R语言简介 R语言是一种解释型、交互式的高级统计分析语言。它的核心优势在于丰富的统计包

R语言e1071包处理不平衡数据集:重采样与权重调整,优化模型训练

![R语言e1071包处理不平衡数据集:重采样与权重调整,优化模型训练](https://nwzimg.wezhan.cn/contents/sitefiles2052/10264816/images/40998315.png) # 1. 不平衡数据集的挑战和处理方法 在数据驱动的机器学习应用中,不平衡数据集是一个常见而具有挑战性的问题。不平衡数据指的是类别分布不均衡,一个或多个类别的样本数量远超过其他类别。这种不均衡往往会导致机器学习模型在预测时偏向于多数类,从而忽视少数类,造成性能下降。 为了应对这种挑战,研究人员开发了多种处理不平衡数据集的方法,如数据层面的重采样、在算法层面使用不同

机器学习数据准备:R语言DWwR包的应用教程

![机器学习数据准备:R语言DWwR包的应用教程](https://statisticsglobe.com/wp-content/uploads/2021/10/Connect-to-Database-R-Programming-Language-TN-1024x576.png) # 1. 机器学习数据准备概述 在机器学习项目的生命周期中,数据准备阶段的重要性不言而喻。机器学习模型的性能在很大程度上取决于数据的质量与相关性。本章节将从数据准备的基础知识谈起,为读者揭示这一过程中的关键步骤和最佳实践。 ## 1.1 数据准备的重要性 数据准备是机器学习的第一步,也是至关重要的一步。在这一阶

【R语言与云计算】:利用云服务运行大规模R数据分析

![【R语言与云计算】:利用云服务运行大规模R数据分析](https://www.tingyun.com/wp-content/uploads/2022/11/observability-02.png) # 1. R语言与云计算的基础概念 ## 1.1 R语言简介 R语言是一种广泛应用于统计分析、数据挖掘和图形表示的编程语言和软件环境。其强项在于其能够进行高度自定义的分析和可视化操作,使得数据科学家和统计师可以轻松地探索和展示数据。R语言的开源特性也促使其社区持续增长,贡献了大量高质量的包(Package),从而增强了语言的实用性。 ## 1.2 云计算概述 云计算是一种通过互联网提供按需

【R语言Capet包集成挑战】:解决数据包兼容性问题与优化集成流程

![【R语言Capet包集成挑战】:解决数据包兼容性问题与优化集成流程](https://www.statworx.com/wp-content/uploads/2019/02/Blog_R-script-in-docker_docker-build-1024x532.png) # 1. R语言Capet包集成概述 随着数据分析需求的日益增长,R语言作为数据分析领域的重要工具,不断地演化和扩展其生态系统。Capet包作为R语言的一个新兴扩展,极大地增强了R在数据处理和分析方面的能力。本章将对Capet包的基本概念、功能特点以及它在R语言集成中的作用进行概述,帮助读者初步理解Capet包及其在

数据清洗新境界:R语言lubridate包的六大实用技巧

![数据清洗新境界:R语言lubridate包的六大实用技巧](https://raw.githubusercontent.com/rstudio/cheatsheets/main/pngs/thumbnails/lubridate-cheatsheet-thumbs.png) # 1. 数据清洗与R语言lubridate包简介 在数据分析的世界中,准确和高效地处理时间序列数据是基本且关键的技能之一。R语言的lubridate包正是为了解决这类问题而诞生的。它提供了强大的日期时间解析、操作和格式化的功能,从而简化了处理时间数据的复杂性。本章节旨在向读者介绍数据清洗的概念和lubridate包

R语言中的概率图模型:使用BayesTree包进行图模型构建(图模型构建入门)

![R语言中的概率图模型:使用BayesTree包进行图模型构建(图模型构建入门)](https://siepsi.com.co/wp-content/uploads/2022/10/t13-1024x576.jpg) # 1. 概率图模型基础与R语言入门 ## 1.1 R语言简介 R语言作为数据分析领域的重要工具,具备丰富的统计分析、图形表示功能。它是一种开源的、以数据操作、分析和展示为强项的编程语言,非常适合进行概率图模型的研究与应用。 ```r # 安装R语言基础包 install.packages("stats") ``` ## 1.2 概率图模型简介 概率图模型(Probabi

【多层关联规则挖掘】:arules包的高级主题与策略指南

![【多层关联规则挖掘】:arules包的高级主题与策略指南](https://djinit-ai.github.io/images/Apriori-Algorithm-6.png) # 1. 多层关联规则挖掘的理论基础 关联规则挖掘是数据挖掘领域中的一项重要技术,它用于发现大量数据项之间有趣的关系或关联性。多层关联规则挖掘,在传统的单层关联规则基础上进行了扩展,允许在不同概念层级上发现关联规则,从而提供了更多维度的信息解释。本章将首先介绍关联规则挖掘的基本概念,包括支持度、置信度、提升度等关键术语,并进一步阐述多层关联规则挖掘的理论基础和其在数据挖掘中的作用。 ## 1.1 关联规则挖掘