YOLOv8中的NMS(非极大值抑制)算法原理及应用

发布时间: 2024-05-01 13:23:00 阅读量: 598 订阅数: 188
RAR

非极大值抑制NMS算法

![YOLOv8中的NMS(非极大值抑制)算法原理及应用](https://img-blog.csdnimg.cn/20190305215136340.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L29xcUVOdlkxMg==,size_16,color_FFFFFF,t_70) # 1. YOLOv8中的NMS算法概述 NMS(非极大值抑制)算法是一种广泛应用于目标检测中的后处理技术,其目的是从候选检测框中筛选出最优的检测结果,消除重叠或冗余的检测框。在YOLOv8目标检测框架中,NMS算法扮演着至关重要的角色,负责对网络输出的预测框进行筛选,生成最终的目标检测结果。 # 2. NMS算法原理 ### 2.1 NMS算法的数学推导 #### 2.1.1 IoU计算 交并比(IoU)是衡量两个矩形框重叠程度的指标,计算公式为: ```python IoU = (Area of Overlap) / (Area of Union) ``` 其中,重叠区域面积为: ```python Area of Overlap = min(box1_width, box2_width) * min(box1_height, box2_height) ``` 联合区域面积为: ```python Area of Union = box1_width * box1_height + box2_width * box2_height - Area of Overlap ``` #### 2.1.2 置信度阈值和IoU阈值 NMS算法有两个关键参数: - **置信度阈值**:低于此阈值的检测框将被过滤掉。 - **IoU阈值**:如果两个检测框的IoU大于此阈值,则IoU较小的检测框将被过滤掉。 ### 2.2 NMS算法的实现步骤 NMS算法的实现步骤如下: 1. 对所有检测框按置信度降序排序。 2. 遍历检测框列表: - 如果当前检测框的置信度低于置信度阈值,则跳过。 - 否则,将当前检测框标记为“保留”。 - 对于列表中剩余的检测框: - 计算当前检测框与剩余检测框的IoU。 - 如果IoU大于IoU阈值,则将剩余检测框标记为“丢弃”。 3. 返回所有标记为“保留”的检测框。 **代码块:** ```python def nms(boxes, scores, iou_threshold=0.5, confidence_threshold=0.5): """ 非极大值抑制算法(NMS) Args: boxes: 检测框列表,每个元素为[x1, y1, x2, y2] scores: 检测框置信度列表 iou_threshold: IoU阈值 confidence_threshold: 置信度阈值 Returns: 保留的检测框列表 """ # 排序检测框 sorted_indices = np.argsort(scores)[::-1] boxes = boxes[sorted_indices] scores = scores[sorted_indices] # 初始化保留的检测框列表 keep_boxes = [] # 遍历检测框 while boxes.size > 0: # 获取置信度最高的检测框 box = boxes[0] score = scores[0] # 如果置信度低于阈值,则跳过 if score < confidence_threshold: break # 将当前检测框标记为“保留” keep_boxes.append(box) # 计算当前检测框与剩余检测框的IoU ious = compute_ious(box, boxes[1:]) # 将IoU大于阈值的检测框标记为“丢弃” ```
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

专栏简介
专栏“Yolov8简介与应用解析”全面介绍了Yolov8目标检测算法。从基本原理、应用概述到与其他算法的对比分析,专栏深入探讨了Yolov8的优势和特性。文章还提供了Yolov8训练数据集准备、模型训练调参、移动设备部署优化、NMS算法原理、FPN实现原理、多尺度训练技巧、微调技巧、性能评估指标、优化方法、数据增强技术、迁移学习方法、连续帧处理技术等方面的详细指导。此外,专栏还展示了Yolov8在道路交通车辆检测、无人机目标识别、工业安全监控、食品质检、医学影像分析、体育动作识别、智能家居行为检测、环境监控、机器人导航等领域的实战应用案例,为读者提供了深入了解和应用Yolov8的宝贵资源。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

JY01A直流无刷IC全攻略:深入理解与高效应用

![JY01A直流无刷IC全攻略:深入理解与高效应用](https://www.electricaltechnology.org/wp-content/uploads/2016/05/Construction-Working-Principle-and-Operation-of-BLDC-Motor-Brushless-DC-Motor.png) # 摘要 本文详细介绍了JY01A直流无刷IC的设计、功能和应用。文章首先概述了直流无刷电机的工作原理及其关键参数,随后探讨了JY01A IC的功能特点以及与电机集成的应用。在实践操作方面,本文讲解了JY01A IC的硬件连接、编程控制,并通过具体

数据备份与恢复:中控BS架构考勤系统的策略与实施指南

![数据备份与恢复:中控BS架构考勤系统的策略与实施指南](https://www.ahd.de/wp-content/uploads/Backup-Strategien-Inkrementelles-Backup.jpg) # 摘要 在数字化时代,数据备份与恢复已成为保障企业信息系统稳定运行的重要组成部分。本文从理论基础和实践操作两个方面对中控BS架构考勤系统的数据备份与恢复进行深入探讨。文中首先阐述了数据备份的必要性及其对业务连续性的影响,进而详细介绍了不同备份类型的选择和备份周期的制定。随后,文章深入解析了数据恢复的原理与流程,并通过具体案例分析展示了恢复技术的实际应用。接着,本文探讨

【TongWeb7负载均衡秘笈】:确保请求高效分发的策略与实施

![【TongWeb7负载均衡秘笈】:确保请求高效分发的策略与实施](https://media.geeksforgeeks.org/wp-content/uploads/20240130183553/Least-Response-(2).webp) # 摘要 本文从基础概念出发,对负载均衡进行了全面的分析和阐述。首先介绍了负载均衡的基本原理,然后详细探讨了不同的负载均衡策略及其算法,包括轮询、加权轮询、最少连接、加权最少连接、响应时间和动态调度算法。接着,文章着重解析了TongWeb7负载均衡技术的架构、安装配置、高级特性和应用案例。在实施案例部分,分析了高并发Web服务和云服务环境下负载

【Delphi性能调优】:加速进度条响应速度的10项策略分析

![要进行追迹的光线的综述-listview 百分比进度条(delphi版)](https://www.bruker.com/en/products-and-solutions/infrared-and-raman/ft-ir-routine-spectrometer/what-is-ft-ir-spectroscopy/_jcr_content/root/sections/section_142939616/sectionpar/twocolumns_copy_copy/contentpar-1/image_copy.coreimg.82.1280.jpeg/1677758760098/ft

【高级驻波比分析】:深入解析复杂系统的S参数转换

# 摘要 驻波比分析和S参数是射频工程中不可或缺的理论基础与测量技术,本文全面探讨了S参数的定义、物理意义以及测量方法,并详细介绍了S参数与电磁波的关系,特别是在射频系统中的作用。通过对S参数测量中常见问题的解决方案、数据校准与修正方法的探讨,为射频工程师提供了实用的技术指导。同时,文章深入阐述了S参数转换、频域与时域分析以及复杂系统中S参数处理的方法。在实际系统应用方面,本文分析了驻波比分析在天线系统优化、射频链路设计评估以及软件仿真实现中的重要性。最终,本文对未来驻波比分析技术的进步、测量精度的提升和教育培训等方面进行了展望,强调了技术发展与标准化工作的重要性。 # 关键字 驻波比分析;

信号定位模型深度比较:三角测量VS指纹定位,优劣一目了然

![信号定位模型深度比较:三角测量VS指纹定位,优劣一目了然](https://gnss.ecnu.edu.cn/_upload/article/images/8d/92/01ba92b84a42b2a97d2533962309/97c55f8f-0527-4cea-9b6d-72d8e1a604f9.jpg) # 摘要 本论文首先概述了信号定位技术的基本概念和重要性,随后深入分析了三角测量和指纹定位两种主要技术的工作原理、实际应用以及各自的优势与不足。通过对三角测量定位模型的解析,我们了解到其理论基础、精度影响因素以及算法优化策略。指纹定位技术部分,则侧重于其理论框架、实际操作方法和应用场

【PID调试实战】:现场调校专家教你如何做到精准控制

![【PID调试实战】:现场调校专家教你如何做到精准控制](https://d3i71xaburhd42.cloudfront.net/116ce07bcb202562606884c853fd1d19169a0b16/8-Table8-1.png) # 摘要 PID控制作为一种历史悠久的控制理论,一直广泛应用于工业自动化领域中。本文从基础理论讲起,详细分析了PID参数的理论分析与选择、调试实践技巧,并探讨了PID控制在多变量、模糊逻辑以及网络化和智能化方面的高级应用。通过案例分析,文章展示了PID控制在实际工业环境中的应用效果以及特殊环境下参数调整的策略。文章最后展望了PID控制技术的发展方

网络同步新境界:掌握G.7044标准中的ODU flex同步技术

![网络同步新境界:掌握G.7044标准中的ODU flex同步技术](https://sierrahardwaredesign.com/wp-content/uploads/2020/01/ITU-T-G.709-Drawing-for-Mapping-and-Multiplexing-ODU0s-and-ODU1s-and-ODUflex-ODU2-e1578985935568-1024x444.png) # 摘要 本文详细探讨了G.7044标准与ODU flex同步技术,首先介绍了该标准的技术原理,包括时钟同步的基础知识、G.7044标准框架及其起源与应用背景,以及ODU flex技术

字符串插入操作实战:insert函数的编写与优化

![字符串插入操作实战:insert函数的编写与优化](https://img-blog.csdnimg.cn/d4c4f3d4bd7646a2ac3d93b39d3c2423.png) # 摘要 字符串插入操作是编程中常见且基础的任务,其效率直接影响程序的性能和可维护性。本文系统地探讨了字符串插入操作的理论基础、insert函数的编写原理、使用实践以及性能优化。首先,概述了insert函数的基本结构、关键算法和代码实现。接着,分析了在不同编程语言中insert函数的应用实践,并通过性能测试揭示了各种实现的差异。此外,本文还探讨了性能优化策略,包括内存使用和CPU效率提升,并介绍了高级数据结

环形菜单的兼容性处理

![环形菜单的兼容性处理](https://opengraph.githubassets.com/c8e83e2f07df509f22022f71f2d97559a0bd1891d8409d64bef5b714c5f5c0ea/wanliyang1990/AndroidCircleMenu) # 摘要 环形菜单作为一种用户界面元素,为软件和网页设计提供了新的交互体验。本文首先介绍了环形菜单的基本知识和设计理念,重点探讨了其通过HTML、CSS和JavaScript技术实现的方法和原理。然后,针对浏览器兼容性问题,提出了有效的解决方案,并讨论了如何通过测试和优化提升环形菜单的性能和用户体验。本

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )