随机过程详解:定义、分类与分布特性
5星 · 超过95%的资源 需积分: 10 117 浏览量
更新于2024-07-30
1
收藏 186KB PDF 举报
"北邮陆传赉老师的随机过程讲义涵盖了随机过程的基本概念、类型以及分布律和数字特征等核心内容。"
随机过程是概率论与统计学中的一个重要概念,广泛应用于通信、信号处理、物理学、经济学等多个领域。陆传赉老师的随机过程讲义深入浅出地介绍了这一主题。
首先,随机过程的定义是基于概率空间(Ω, ö, P)的,其中T代表参数集。随机过程{X(t,e),t∈T}是由一系列与参数t关联的随机变量X(t,e)组成的集合。这里的随机变量X(t,e)在每一点t∈T上都对应一个概率分布,而当参数t固定时,X(t,e)则成为(Ω, ö, P)上的一个确定性函数。状态空间I是所有可能取值的集合,可以是离散的,也可以是连续的。
随机过程可以根据参数T和状态空间I的特性进行分类:
1. 当T和I都是离散的,比如离散时间且离散状态的随机过程。
2. T是连续的,I是离散的,如离散状态但连续时间的随机过程。
3. T是离散的,I是连续的,例如连续状态但离散时间的随机过程。
4. T和I都是连续的,这是最一般的情况,包括了连续时间和连续状态的随机过程。
随机过程的特性分类则侧重于它们的概率属性,如:
- 正交增量过程:相邻时间间隔内的增量相互独立。
- 独立增量过程:任意两个不重叠时间段内的增量是独立的。
- 马尔可夫过程:未来状态只依赖于当前状态,而不依赖于过去的历史状态。
- 平稳随机过程:其统计特性(如均值、方差和相关性)不随时间平移而改变。
随机过程的分布律和数字特征是理解其行为的关键。有限维分布函数族定义了随机过程在特定时间点取值的联合分布。这个分布函数具有对称性和相容性等性质。对称性表明无论时间点如何排列,联合分布保持不变;相容性意味着如果考虑更少的时间点,其分布是原有分布的子集,这反映了分布的连续性。
具体来说,对称性表示对于随机变量(X(t1), X(t2), ..., X(tn))的任意排列,其联合分布函数F(t1, t2, ..., tn; x1, x2, ..., xn)保持不变。相容性则保证了当增加或减少时间点时,新的分布函数可以由原来的分布函数导出,比如当m<n时,m维分布函数F_m(t1, t2, ..., tm; x1, x2, ..., xm)是n维分布函数F_n(t1, t2, ..., tn; x1, x2, ..., xn)在剩余变量取定值时的限制。
这些基本概念和性质构成了随机过程理论的基础,对于理解和分析随机过程的行为至关重要。陆传赉老师的讲义通过清晰的阐述,有助于学生深入掌握这一复杂的数学工具,并能将其应用到实际问题中去。
2011-10-11 上传
174 浏览量
193 浏览量
2009-09-06 上传
nano_2008
- 粉丝: 0
- 资源: 7
最新资源
- 串 行 通 信 论 谈
- oracle集群完全配置手册
- AJAX In Action(中文版) .pdf
- IDL入门与提高(教程) 编程
- 计算机三级上机试题--南开一百题
- Joomla开发.PDF
- ATSC Standard:Program and System Information Protocol for Terrestrial Broadcast and Cable
- visual basic发展历程
- 新一代存储器MRAM
- JAVA电子书Thinking.In.Java.3rd.Edition.Chinese.eBook
- 经典算法(c语言),51个经典算法
- 高质量c/c++编程指南
- DSP基本知识学习入门
- C程序设计 第二版 PDF
- 操作系统课设 进程调度模拟程序
- 2008年4月计算机等级考试软件测试工程师试题