Python机器学习实践:NumPy与Scipy稀疏矩阵
需积分: 0 159 浏览量
更新于2024-09-05
收藏 285KB PDF 举报
"Python机器学习手册,参考Chris Albon的《使用Python进行机器学习实战》。本书涵盖了Python在机器学习中的应用,特别是涉及到向量、矩阵和数组(NumPy)、稀疏矩阵(scipy.sparse)以及NumPy数组的属性和操作。"
在Python机器学习领域,NumPy库是基础,它提供了高效处理大型多维数组和矩阵的工具。在描述中提到的`vector`, `matrix`和`array`是NumPy的核心概念。
1. 向量、矩阵和数组(NumPy)
- **向量**:在NumPy中,一维数组可以视为向量。例如,`vector_row=np.array([1,2,3])`创建了一个行向量,而`vector_column=np.array([[1],[2],[3]])`创建了一个列向量。
- **矩阵**:二维数组代表矩阵。`matrix=np.array([[1,2],[3,4],[5,6]])`创建了一个3x2的矩阵。此外,NumPy还提供了一个专用的数据结构`matrix_object=np.mat([[1,2],[3,4]])`,但通常推荐使用常规的二维数组以避免不必要的类型转换。
2. 稀疏矩阵(sparse matrix)
- 在处理大量数据时,如果大部分元素为零,使用稀疏矩阵可以节省存储空间和计算时间。例如,`matrix_sparse=sparse.csr_matrix(matrix)`使用CSR(Compressed Sparse Row)格式创建了一个稀疏矩阵。这种格式只存储非零元素及其对应的行索引,对于存储和操作大型稀疏矩阵非常有效。
3. NumPy数组的操作
- **选择元素**:通过索引可以访问数组中的特定元素,如`print(vector[3])`获取第四个元素,`print(matrix[2][1])`获取第三行第二列的元素。
- **切片**:使用切片可以选取数组的一部分,如`print(vector[:3])`选取前三个元素,`print(matrix[:2,:])`选取矩阵的前两行。
- **属性查询**:可以获取数组的形状(`matrix.shape`)、元素数量(`matrix.size`)、维度(`matrix.ndim`)等信息。
- **广播机制**:NumPy的广播功能允许不同形状的数组在运算时自动调整大小以匹配,这是一种强大的特性,例如在执行数学运算时无需显式地重塑数组。
这本书还会深入讲解其他机器学习相关主题,如数据预处理、模型选择、评估和优化等。Python作为机器学习的首选语言之一,其丰富的库如Pandas、Scikit-Learn和TensorFlow等提供了便捷的数据处理和模型构建能力。对于初学者和进阶者,掌握这些基础知识是必不可少的。
2018-08-31 上传
2023-07-02 上传
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
MachineYang
- 粉丝: 0
- 资源: 1
最新资源
- BottleJS快速入门:演示JavaScript依赖注入优势
- vConsole插件使用教程:输出与复制日志文件
- Node.js v12.7.0版本发布 - 适合高性能Web服务器与网络应用
- Android中实现图片的双指和双击缩放功能
- Anum Pinki英语至乌尔都语开源词典:23000词汇会话
- 三菱电机SLIMDIP智能功率模块在变频洗衣机的应用分析
- 用JavaScript实现的剪刀石头布游戏指南
- Node.js v12.22.1版发布 - 跨平台JavaScript环境新选择
- Infix修复发布:探索新的中缀处理方式
- 罕见疾病酶替代疗法药物非临床研究指导原则报告
- Node.js v10.20.0 版本发布,性能卓越的服务器端JavaScript
- hap-java-client:Java实现的HAP客户端库解析
- Shreyas Satish的GitHub博客自动化静态站点技术解析
- vtomole个人博客网站建设与维护经验分享
- MEAN.JS全栈解决方案:打造MongoDB、Express、AngularJS和Node.js应用
- 东南大学网络空间安全学院复试代码解析