多自主水下机器人路径规划与编队控制综述

需积分: 9 0 下载量 185 浏览量 更新于2024-07-09 收藏 1.76MB PDF 举报
"这篇论文回顾了多自主水下车辆(AUV)的路径规划和编队控制技术。路径规划和编队控制是多车辆系统,尤其是AUV中的关键概念,它们的合作实施能实现期望的结果并提高任务成功的概率。由于AUV的非线性动力学和环境条件,其协同控制是一项挑战。尽管AUV应用的发展表明路径规划和编队控制研究的重要性,但与地面或空中自主车辆相比,这一领域的关注度相对较低,需要进一步探索。论文审查了AUV编队控制的不同结构,并讨论了其优点和挑战。" 在多自主水下车辆(AUV)领域,路径规划和编队控制是两个至关重要的技术。路径规划涉及如何设计和优化AUV的运动轨迹,使其能够有效地从起点到达终点,同时避免碰撞、障碍物以及考虑水下环境的影响,如水流、海底地形等。这通常需要高级的算法,如Dijkstra算法、A*搜索算法或者遗传算法等,以确保路径的有效性和安全性。 编队控制则关注多个AUV如何协同工作,形成特定的几何形状或阵型,以执行复杂的任务,如海洋调查、搜救操作或海底构造测绘。编队控制的优势在于可以扩展单个AUV的能力,通过合作完成个体难以达成的目标。编队策略包括集中式、分布式和混合式,每种都有其独特的优势和适用场景。集中式方法依赖一个中心控制器来协调所有AUV的动作,而分布式方法则允许每个AUV根据本地信息做出决策,更加鲁棒但可能复杂度较高。混合式策略结合了两者的优点,适用于大规模AUV群体的控制。 尽管AUV的路径规划和编队控制已经取得了一定的进步,但仍然面临诸多挑战。非线性动力学使得AUV的动态模型复杂,需要高级控制理论,如滑模控制、自适应控制等来处理。此外,水下通信的限制,如低带宽、高延迟和易受干扰,对协同控制提出了额外的难题。环境不确定性,如不可预测的水流和海洋条件,也增加了路径规划和编队控制的难度。 这篇论文通过回顾现有的研究成果,强调了在AUV领域进一步研究和开发路径规划和编队控制技术的必要性。未来的重点可能包括开发更高效、适应性强的路径规划算法,改进编队控制策略以应对不确定性和通信限制,以及融合感知、决策和控制的集成解决方案,以提高AUV在复杂海洋环境中的自主性和任务完成能力。
2023-05-30 上传
2023-02-15 上传

翻译The complex 3D geometries of these submillimeter-scale robots originate from planar (2D) multilayer assemblies formed with deposition and patterning techniques used in the semiconductor industry. Figure 1 (A and B) illustrates the process of transformation that converts these 2D precursors into 3D shapes for the case of a design inspired by the geometry of a peekytoe crab (Cancer irroratus) but engineered to a much smaller dimensions (~1/150 of the actual size; fig. S1). The precursors incorporate layers of SMA (nitinol; 2.5 m in thickness) as a collection of dynamic mechanical joints for locomotion, a film of polyimide (PI; ~8 m in thickness) as a static skeleton for structural support, and pads of silicon dioxide (SiO2; 100 nm in thickness) as bonding sites in the 2D to 3D transformation process (left frames in Fig. 1, A and B). This process begins with transfer printing to deliver these 2D precursors onto the surface of a prestretched silicone elastomer (Dragon Skin 10 Slow, ~500 m in thickness) that supports structures of polydimethylsiloxane (PDMS; blocks) located near the claws and back legs (middle frame in Fig. 1B). Releasing the prestrain imposes compressive stresses at the bonding sites, with forces sufficient to convert the 2D structures into 3D architectures via a set of controlled bending/ twisting deformations and translational/rotational motions (31, 32). During this process, the distance between the two PDMS blocks also decreases, thereby deforming the claws and back legs. This transformation involves peak strains (<4%) that lie below the maximum phase transition strain of the SMA (right frame in Fig. 1B).

2023-06-12 上传