基于形状算子的隐式曲面曲率计算新方法

需积分: 0 2 下载量 25 浏览量 更新于2024-09-07 收藏 394KB PDF 举报
本文标题"Curvature Computing Based on Shape Operator for Implicit Surfaces"聚焦于隐式曲面的曲率计算方法。作者毛志红探讨了在参数化表面曲率计算中广泛应用的形状算子在隐式曲面处理中的新应用。形状算子,以其特征值和特征向量表示主曲率值和方向,是理解表面几何的重要工具。与现有隐式曲面的曲率公式相比,该研究提出了更为直观和易于计算的曲率公式,这不仅提高了计算效率,还实现了经典微分几何理论与隐式曲面曲率计算的桥梁。 形状算子在隐式曲面处理中的应用涉及数学建模,它允许研究人员通过解析形式表达隐式曲面的曲率,这种表达方式有助于深入理解曲面的局部几何特性。在传统方法可能需要复杂的导数计算和代数运算时,毛志红的方法简化了这一过程,使得非专业背景的用户也能更方便地进行曲率分析。 论文还通过一系列实例展示了新方法的有效性和实用性,这些例子可能涵盖了不同类型的隐式函数和曲面,包括但不限于二次方程、三次样条函数等。这种方法的推广和应用有助于提高计算机图形学和几何建模领域的计算效率,并可能推动进一步的理论研究和实际应用,如计算机辅助设计(CAD)、计算机视觉和机器学习中的形状分析。 这篇论文对形状算子在隐式曲面曲率计算中的创新应用进行了深入探讨,为理解和计算非参数化曲面提供了实用的工具,同时也促进了理论与实践之间的融合。对于从事计算机图形学、数值方法或几何建模的科研人员和工程师来说,这篇文章提供了有价值的新视角和参考材料。

PCX1 = 1.5482 $Shape factor Cfx for longitudinal force PDX1 = 1.1632 $Longitudinal friction Mux at Fznom PDX2 = -0.11154 $Variation of friction Mux with load PDX3 = 0.94173 $Variation of friction Mux with camber squared PEX1 = 0.27 $Longitudinal curvature Efx at Fznom PEX2 = 0.011693 $Variation of curvature Efx with load PEX3 = 0.053303 $Variation of curvature Efx with load squared PEX4 = 0.59223 $Factor in curvature Efx while driving PKX1 = 32.9102 $Longitudinal slip stiffness Kfx/Fz at Fznom PKX2 = 12.7911 $Variation of slip stiffness Kfx/Fz with load PKX3 = -0.11254 $Exponent in slip stiffness Kfx/Fz with load PHX1 = -0.0017527 $Horizontal shift Shx at Fznom PHX2 = 0.00068824 $Variation of shift Shx with load PVX1 = 0.068079 $Vertical shift Svx/Fz at Fznom PVX2 = 0.0023429 $Variation of shift Svx/Fz with load PPX1 = -0.8733 $linear influence of inflation pressure on longitudinal slip stiffness PPX2 = 0.7035 $quadratic influence of inflation pressure on longitudinal slip stiffness PPX3 = -0.0080216 $linear influence of inflation pressure on peak longitudinal friction PPX4 = -0.47776 $quadratic influence of inflation pressure on peak longitudinal friction RBX1 = 18.3369 $Slope factor for combined slip Fx reduction RBX2 = 18.2559 $Variation of slope Fx reduction with kappa RBX3 = 607.8133 $Influence of camber on stiffness for Fx combined RCX1 = 0.96372 $Shape factor for combined slip Fx reduction REX1 = -1.2699 $Curvature factor of combined Fx REX2 = -0.14323 $Curvature factor of combined Fx with load RHX1 = 0.0037359 $Shift factor for combined slip Fx reduction帮我做成表格

2023-06-12 上传

帮我翻译下面这段话 %% 初始化 % 最大迭代次数 RRTCountMax = 30000; APFCountMax = 30000; % 地图范围 mapLimit = [0, 10, 0, 10]; % 步长 RRTstep = 0.1; APFstep = 0.007; % 起始点、目标点 % select = 5; starts = [1, 5; 1, 1; 1, 9; 1, 3; 4,4]; targets = [9, 4; 9,9; 9, 1; 5, 9; 9,8]; select = 1; start = starts(select, :); target = targets(select, :); % 障碍物 x y r obs = [ 3.5, 3.1, 0.3; 2.5, 5.5, 0.5; 5.2, 6.6, 0.4; 6.8, 4.5, 0.7; 7.4, 7.1, 0.5; 5.1, 4.8, 0.3; 3.2, 8.8, 0.5; 6.7, 8.9, 0.3; 6.2, 1.8, 0.2; 9.1, 5.6, 0.3 ]; % kAttr, kRep kAttr = 1; kRep = 5; kObs = 3; axis(mapLimit); hold on; cla; for i = 1: size(obs, 1) rectangle('Position', [obs(i,1)-obs(i,3), obs(i,2)-obs(i,3), obs(i,3) * 2, obs(i,3) * 2], 'Curvature', [1 1]); end plot(start(1), start(2), '.', 'markersize',30, 'color','red'); plot(target(1), target(2), '.', 'markersize',30, 'color','green'); % ok = false; result = []; while ~ok ok = true; rrt_result = RRTstar(mapLimit, start, target, obs, RRTstep, RRTCountMax); if isempty(rrt_result) disp("rrt star cannot find path") return end if size(rrt_result, 1) == 1 disp('start == target') return end plot(rrt_result(:, 1), rrt_result(:, 2), '-', 'color','blue'); for i = 30000: size(rrt_result, 1) apf_start = rrt_result(i - 1, :); apf_target = rrt_result(i, :); [apf_result, success, newStart, count, obs] = APF(mapLimit, start, target,apf_start, apf_target, obs, APFstep, APFCountMax, kAttr, kRep, kObs); result = [result; apf_result]; if (success == false) ok = false; start = newStart; break; end end end plot(result(:, 1), result(:, 2), '.', 'color','red');

2023-03-25 上传