AFM探针下特定压强能量法优化蓝宝石微纳级多道切削策略

需积分: 1 0 下载量 160 浏览量 更新于2024-09-11 收藏 1.2MB PDF 举报
本文探讨了一种创新的计算方法,用于在特定深度下,通过使用原子力显微镜(AFM)探针和特定的下压力能量(Specific Down Force Energy, SDFE),最小化对蓝宝石基板的切割次数。该研究发表在《材料加工技术》(Journal of Materials Processing Technology) 的212期(2012年),文章号为2321-2331,可通过SciVerse ScienceDirect获取全文。 文章首先提出了SDFE这一概念,这是一种衡量在纳米尺度多层切割过程中AFM探针作用于材料上的力能密度的新指标。SDFE考虑了AFM切割工具的精细操作特性,如探针尖端的硬度、接触面积以及施加的压力,旨在优化切割效率并减小材料损伤。这种方法特别适用于蓝宝石基板,因其在电子、光学和半导体工业中的广泛应用,对于精确切割有着严格的要求。 作者们从理论与实验两个层面展开研究,通过数学模型和实际测量,确定了如何通过调整AFM探针的工作参数,如扫描速度、切削深度和下压力,来实现最少的切割次数。研究还探讨了多层切割过程中如何保持切割精度,避免形成表面粗糙度,并确保切割深度的一致性。 论文的关键步骤包括: 1. **模型建立**:构建了一个基于SDFE的数学模型,以预测不同参数组合下的切割效果。 2. **实验设计**:进行了一系列AFM切割实验,测量了不同SDFE值下的切割性能,如切削路径长度、表面完整性等。 3. **数据分析**:通过统计分析,找出SDFE的最佳值,从而最小化切割次数。 4. **结果验证**:通过实验结果验证了计算方法的有效性,并讨论了其在实际生产中的应用潜力。 文章的结论部分强调了这种方法对于提升纳米尺度切割的效率和精度的重要性,以及它如何有助于减少能源消耗和提高蓝宝石基板的整体质量。此外,这项工作也为其他高精度切割过程中的能量管理和工具选择提供了新的视角和参考。 这篇论文的核心贡献是提出了一种利用SDFE的概念和AFM探针进行纳米级多层切割的高效计算方法,这将有助于改善现有切割工艺,特别是在对材料表面完整性有极高要求的领域。

精简下面表达:Existing protein function prediction methods integrate PPI networks and multivariate bioinformatics data to improve the performance of function prediction. By combining multivariate information, the interactions between proteins become diverse. Different interactions’ functions in functional prediction are various. Combining multiple interactions simply between two proteins can effectively reduce the effect of false negatives and increase the number of predicted functions, but it can also increase the number of false positive functions, which contribute to nonobvious enhancement for the overall functional prediction performance. In this article, we have presented a framework for protein function prediction algorithms based on PPI network and semantic similarity with the addition of protein hierarchical functions to them. The framework relies on diverse clustering algorithms and the calculation of protein semantic similarity for protein function prediction. Classification and similarity calculations for protein pairs clustered by the functional feature are more accurate and reliable, allowing for the prediction of protein function at different functional levels from different proteomes, and giving biological applications greater flexibility.The method proposed in this paper performs well on protein data from wine yeast cells, but how well it matches other data remains to be verified. Yet until now, most unknown proteins have only been able to predict protein function by calculating similarities to their homologues. The predictions result of those unknown proteins without homologues are unstable because they are relatively isolated in the protein interaction network. It is difficult to find one protein with high similarity. In the framework proposed in this article, the number of features selected after clustering and the number of protein features selected for each functional layer has a significant impact on the accuracy of subsequent functional predictions. Therefore, when making feature selection, it is necessary to select as many functional features as possible that are important for the whole interaction network. When an incorrect feature was selected, the prediction results will be somewhat different from the actual function. Thus as a whole, the method proposed in this article has improved the accuracy of protein function prediction based on the PPI network method to a certain extent and reduces the probability of false positive prediction results.

2023-02-27 上传
2023-02-12 上传
2023-06-09 上传