腾讯大数据专家翟艳堂分享:构建大规模Hadoop集群实战与挑战
需积分: 10 25 浏览量
更新于2024-07-23
收藏 656KB PDF 举报
在2013年中国大数据技术大会上,腾讯数据中心资深专家翟艳堂分享了《腾讯大规模Hadoop集群实践》的演讲,深入探讨了腾讯如何在海量数据处理中实现高效、高可用和高扩展性的集群架构。演讲内容主要涵盖了以下几个关键点:
1. **大规模Hadoop集群部署**:
- 腾讯针对不同的业务部门(如SNG、IEG、MIG等)设立了多个集群,如同乐微博集群、宝安主集群等,规模从200台到上千台不等,展示了公司对Hadoop在各业务场景中的广泛应用。
2. **挑战与问题**:
- 计算层和存储层是面临的主要挑战,包括NameNode的单点故障风险(可能导致数据丢失),以及JobTracker的调度效率低和集群扩展性不足。NameNode的重启时间长且不支持灰度发布变更,而JobTracker的集中式设计限制了其性能和扩展能力。
3. **解决方案选择**:
- 腾讯选择了TDW基线版本CDH3u3作为起点,但意识到社区开发的Yarn和Corona版本可能存在稳定性问题,尤其是Facebook发布的版本,可能面临代码复杂度增加的问题。他们考虑到了从0.20系列代码向2.X系列代码的迁移,但同时关注了HDFS的需求升级。
4. **技术改进**:
- 考虑到JobTracker的局限性,腾讯引入了JobTracker分散化的设计,将资源管理和任务调度解耦,提升了任务调度的精确性和效率。此外,还采用了Cluster Manager和JobClient来优化任务管理,进一步提高了集群的性能和可用性。
5. **HDFS的优化**:
- 为了满足业务需求,腾讯对HDFS进行了升级,采用了2.X版本以适应新的功能和技术标准,确保了数据的高效存储和访问。
6. **时间线**:
- 这些改进措施是在2012年12月左右实施的,表明腾讯在持续进行技术迭代和优化,以应对不断增长的数据处理需求。
7. **数据仓库和分析**:
- 除了基础的Hadoop集群外,腾讯还构建了数据仓库(如TDW)、数据挖掘和分析平台,以及数据服务框架,支持自助提取、分析、精准推荐模型等高级功能,助力于数据驱动的业务决策。
8. **数据开发者平台与数据应用门户**:
- 提供了一个数据开发者平台和数据应用门户,促进了数据的共享和应用,同时也减轻了运营负担,推动了数据驱动的创新。
9. **总结**:
- 腾讯的大规模Hadoop集群实践体现了对高可用、高效和高扩展性的重视,通过不断的技术迭代和优化,成功应对了数据处理中的各种挑战,推动了业务的发展。
翟艳堂的演讲详细剖析了腾讯在构建大规模Hadoop集群过程中所遇到的问题、解决方案和技术演进,展示了公司在大数据处理方面的实力和前瞻性思考。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2014-05-29 上传
2014-08-20 上传
2014-03-25 上传
140 浏览量
2021-03-22 上传
388 浏览量
我是主题曲哥哥
- 粉丝: 136
- 资源: 11
最新资源
- 正整数数组验证库:确保值符合正整数规则
- 系统移植工具集:镜像、工具链及其他必备软件包
- 掌握JavaScript加密技术:客户端加密核心要点
- AWS环境下Java应用的构建与优化指南
- Grav插件动态调整上传图像大小提高性能
- InversifyJS示例应用:演示OOP与依赖注入
- Laravel与Workerman构建PHP WebSocket即时通讯解决方案
- 前端开发利器:SPRjs快速粘合JavaScript文件脚本
- Windows平台RNNoise演示及编译方法说明
- GitHub Action实现站点自动化部署到网格环境
- Delphi实现磁盘容量检测与柱状图展示
- 亲测可用的简易微信抽奖小程序源码分享
- 如何利用JD抢单助手提升秒杀成功率
- 快速部署WordPress:使用Docker和generator-docker-wordpress
- 探索多功能计算器:日志记录与数据转换能力
- WearableSensing: 使用Java连接Zephyr Bioharness数据到服务器