MTCNN与KCF/Kalman结合的人脸检测追踪系统

需积分: 29 3 下载量 130 浏览量 更新于2024-11-07 收藏 46.8MB ZIP 举报
资源摘要信息:"Matlab人脸检测框脸代码-facetracker是一个基于MTCNN模型和KCF/Kalman筛选器实现的人脸检测和跟踪的Matlab项目。该项目的目的是通过深度学习技术,实现对人脸的准确检测和跟踪。MTCNN模型被用于检测当前帧中可见的人脸,而KCF/Kalman筛选器则用于追踪移动中的人脸,解决了多目标跟踪问题。" 知识点详细说明: 1. MTCNN模型:MTCNN是深度学习领域的一种人脸检测模型,全称是Multi-task Cascaded Convolutional Networks。MTCNN模型通常用于同时进行人脸检测、面部标志点定位和边框回归。其设计包括三个级联的深度卷积神经网络:P-Net、R-Net和O-Net。P-Net初步筛选人脸候选区域,R-Net进一步优化这些候选区域,O-Net用于输出最终的人脸检测结果。MTCNN模型通过逐步细化的方式提高检测的准确性。 2. KCF/Kalman筛选器:KCF(Kernelized Correlation Filters)是一种用于目标跟踪的高效算法,它通过在频域学习目标的外观特征,从而快速和准确地在视频序列中跟踪目标。Kalman滤波器是一种动态系统状态估计的算法,它通过考虑系统噪声和测量噪声,预测系统状态的变化,因此常用于运动目标跟踪问题。在这个项目中,KCF和Kalman筛选器被结合起来,以提高追踪移动人脸的准确度和鲁棒性。 3. 多目标跟踪问题(Multiple Object Tracking):多目标跟踪指的是在视频序列中跟踪多个移动目标的问题。这个问题不仅需要识别每个帧中目标的位置,还需要解决目标身份的匹配问题,即当多个目标交叉或遮挡时,如何正确地将它们区分开。这通常涉及复杂的算法,以保证跟踪的连续性和准确性。 4. 人脸检测与跟踪的应用:人脸检测和跟踪是深度学习应用中非常广泛的一个领域,它在安全监控、人机交互、行为分析和视频内容增强等多个领域都有重要的应用价值。准确的人脸检测和跟踪对于这些应用场景的性能有着决定性的影响。 5. 匈牙利算法与分配问题:匈牙利算法是一种在多项式时间内解决分配问题的组合优化算法,它尤其适用于二分图最大匹配问题。在多目标跟踪中,该算法可用于将检测到的人脸与之前的跟踪目标进行最优匹配,以分配正确的追踪路径。这对于管理并跟踪大量目标非常有效。 6. 开源系统:该项目是开源的,意味着源代码对所有人开放。开源项目允许用户自由地使用、修改和分发代码,通常伴随着社区支持和持续的维护。对于Matlab这样的科学计算平台来说,开源项目尤其有助于学术研究和教育目的。 7. Matlab编程环境:Matlab是一种流行的数值计算和可视化编程环境,广泛应用于工程、科学和教育等领域。它提供了强大的矩阵运算功能和丰富的工具箱,特别适合进行算法原型设计和数据分析。Matlab还支持与C/C++等语言的接口,方便与其他程序进行交互。

请解释下这段代码namespace cros { // FaceTracker takes a set of face data produced by FaceDetector as input, // filters the input, and produces the bounding rectangle that encloses the // filtered input. class FaceTracker { public: struct Options { // The dimension of the active sensory array in pixels. Used for normalizing // the input face coordinates. Size active_array_dimension; // The dimension of the active stream that will be cropped. Used for // translating the ROI coordinates in the active array space. Size active_stream_dimension; // The threshold in ms for including a newly detected face for tracking. int face_phase_in_threshold_ms = 3000; // The threshold in ms for excluding a face that's no longer detected for // tracking. int face_phase_out_threshold_ms = 2000; // The angle range [|pan_angle_range|, -|pan_angle_range|] in degrees used // to determine if a face is looking at the camera. float pan_angle_range = 30.0f; }; explicit FaceTracker(const Options& options); ~FaceTracker() = default; FaceTracker(FaceTracker& other) = delete; FaceTracker& operator=(FaceTracker& other) = delete; // Callback for when new face data are ready. void OnNewFaceData(const std::vector<human_sensing::CrosFace>& faces); // The all the rectangles of all the detected faces. std::vector<Rect<float>> GetActiveFaceRectangles() const; // Gets the rectangle than encloses all the detected faces. Returns a // normalized rectangle in [0.0, 1.0] x [0.0, 1.0] with respect to the active // stream dimension. Rect<float> GetActiveBoundingRectangleOnActiveStream() const; void OnOptionsUpdated(const base::Value& json_values); private: struct FaceState { Rect<float> normalized_bounding_box = {0.0f, 0.0f, 0.0f, 0.0f}; base::TimeTicks first_detected_ticks; base::TimeTicks last_detected_ticks; bool has_attention = false; }; Options options_; std::vector<FaceState> faces_; }; } // namespace cros

2023-06-07 上传

请详细解释下这段代码void FaceTracker::OnNewFaceData( const std::vector<human_sensing::CrosFace>& faces) { // Given |f1| and |f2| from two different (usually consecutive) frames, treat // the two rectangles as the same face if their position delta is less than // kFaceDistanceThresholdSquare. // // This is just a heuristic and is not accurate in some corner cases, but we // don't have face tracking. auto is_same_face = [&](const Rect<float>& f1, const Rect<float>& f2) -> bool { const float center_f1_x = f1.left + f1.width / 2; const float center_f1_y = f1.top + f1.height / 2; const float center_f2_x = f2.left + f2.width / 2; const float center_f2_y = f2.top + f2.height / 2; constexpr float kFaceDistanceThresholdSquare = 0.1 * 0.1; const float dist_square = std::pow(center_f1_x - center_f2_x, 2.0f) + std::pow(center_f1_y - center_f2_y, 2.0f); return dist_square < kFaceDistanceThresholdSquare; }; for (const auto& f : faces) { FaceState s = { .normalized_bounding_box = Rect<float>( f.bounding_box.x1 / options_.active_array_dimension.width, f.bounding_box.y1 / options_.active_array_dimension.height, (f.bounding_box.x2 - f.bounding_box.x1) / options_.active_array_dimension.width, (f.bounding_box.y2 - f.bounding_box.y1) / options_.active_array_dimension.height), .last_detected_ticks = base::TimeTicks::Now(), .has_attention = std::fabs(f.pan_angle) < options_.pan_angle_range}; bool found_matching_face = false; for (auto& known_face : faces_) { if (is_same_face(s.normalized_bounding_box, known_face.normalized_bounding_box)) { found_matching_face = true; if (!s.has_attention) { // If the face isn't looking at the camera, reset the timer. s.first_detected_ticks = base::TimeTicks::Max(); } else if (!known_face.has_attention && s.has_attention) { // If the face starts looking at the camera, start the timer. s.first_detected_ticks = base::TimeTicks::Now(); } else { s.first_detected_ticks = known_face.first_detected_ticks; } known_face = s; break; } } if (!found_matching_face) { s.first_detected_ticks = base::TimeTicks::Now(); faces_.push_back(s); } } // Flush expired face states. for (auto it = faces_.begin(); it != faces_.end();) { if (ElapsedTimeMs(it->last_detected_ticks) > options_.face_phase_out_threshold_ms) { it = faces_.erase(it); } else { ++it; } } }

2023-06-08 上传

请详细解释下这段代码Rect<float> FaceTracker::GetActiveBoundingRectangleOnActiveStream() const { std::vector<Rect<float>> faces = GetActiveFaceRectangles(); if (faces.empty()) { return Rect<float>(); } float min_x0 = 1.0f, min_y0 = 1.0f, max_x1 = 0.0f, max_y1 = 0.0f; for (const auto& f : faces) { min_x0 = std::min(f.left, min_x0); min_y0 = std::min(f.top, min_y0); max_x1 = std::max(f.right(), max_x1); max_y1 = std::max(f.bottom(), max_y1); } Rect<float> bounding_rect(min_x0, min_y0, max_x1 - min_x0, max_y1 - min_y0); VLOGF(2) << "Active bounding rect w.r.t active array: " << bounding_rect; // Transform the normalized rectangle in the active sensor array space to the // active stream space. const float active_array_aspect_ratio = static_cast<float>(options_.active_array_dimension.width) / static_cast<float>(options_.active_array_dimension.height); const float active_stream_aspect_ratio = static_cast<float>(options_.active_stream_dimension.width) / static_cast<float>(options_.active_stream_dimension.height); if (active_array_aspect_ratio < active_stream_aspect_ratio) { // The active stream is cropped into letterbox with smaller height than the // active sensor array. Adjust the y coordinates accordingly. const float height_ratio = active_array_aspect_ratio / active_stream_aspect_ratio; bounding_rect.height = std::min(bounding_rect.height / height_ratio, 1.0f); const float y_offset = (1.0f - height_ratio) / 2; bounding_rect.top = std::max(bounding_rect.top - y_offset, 0.0f) / height_ratio; } else { // The active stream is cropped into pillarbox with smaller width than the // active sensor array. Adjust the x coordinates accordingly. const float width_ratio = active_stream_aspect_ratio / active_array_aspect_ratio; bounding_rect.width = std::min(bounding_rect.width / width_ratio, 1.0f); const float x_offset = (1.0f - width_ratio) / 2; bounding_rect.left = std::max(bounding_rect.left - x_offset, 0.0f) / width_ratio; } VLOGF(2) << "Active bounding rect w.r.t active stream: " << bounding_rect; return bounding_rect; }

2023-06-08 上传