MATLAB在控制系统分析中的应用——线性系统可控可观测性

需积分: 15 5 下载量 76 浏览量 更新于2024-08-21 收藏 3.74MB PPT 举报
"该课程是关于‘可控可观测标准型转换’在控制系统计算机辅助设计中的应用,使用MATLAB语言作为工具进行教学。课程源于国家级精品课程,由东北大学信息学院提供,作者为薛定宇,内容包括线性控制系统的计算机辅助分析,重点探讨了系统分析的新方法和MATLAB在系统分析中的应用。课程内容涵盖线性系统定性分析、时域响应、数字仿真、根轨迹分析以及频域分析等。同时,详细讲解了线性系统的稳定性、内部稳定性、相似变换、可控性、可观测性、Kalman分解以及系统状态方程的标准型和范数测度的计算。" 本课程主要针对线性控制系统的计算机辅助设计,利用MATLAB软件进行深入研究。课程首先强调了在计算机辅助分析下,如何更新对线性系统分析的传统观念,解决传统方法难以处理的问题,如离散系统的稳定性分析、高阶系统的根轨迹绘制和多变量系统的频域分析。课程内容丰富,涵盖了线性系统的基础理论和实际应用技术。 在系统分析方面,课程详细介绍了线性系统的定性分析,包括稳定性分析(分为系统稳定性和内部稳定性)、相似变换以及可控性和可观测性的概念与分析方法。这些分析对于理解和设计控制系统的性能至关重要。可控性分析关注系统是否可以通过外部输入来驱动到任何状态,而可观测性分析则关注系统状态是否可以通过其输出来确定。 Kalman分解是线性系统的另一个重要主题,它是状态空间表示中的一种特殊形式,常用于控制理论和估计理论中。此外,课程还讨论了系统状态方程的标准型,这有助于简化系统的描述并便于分析。系统的范数测度是衡量系统性能的一个指标,课程将教授如何计算和利用这些测度来评估系统的动态特性。 MATLAB作为一种强大的数值计算和可视化工具,被广泛应用于控制系统的建模、分析和设计。课程通过实例演示如何使用MATLAB进行线性系统的数字仿真分析,如根轨迹绘制和频域分析,这些方法对于理解系统动态行为和稳定性具有实际意义。 该课程是学习线性控制系统理论和实践的宝贵资源,通过结合MATLAB的实用技巧,学生能够掌握更高级的系统分析技术,为解决复杂控制问题打下坚实基础。