2SK2273-VB: 20V SOT23 N-Channel MOSFET详解

0 下载量 42 浏览量 更新于2024-08-03 收藏 217KB PDF 举报
2SK2273-VB是一款由VBSEMICONDUCTOR公司生产的SOT23封装的N-Channel场效应MOS管。这款MOSFET特别适用于对功率管理和效率有高要求的应用,如直流/直流转换器和便携式设备的负载开关。其关键特性包括: 1. **封装形式**:采用环保的SOT23封装,符合IEC61249-2-21标准,确保了无卤素设计。 2. **技术类型**:采用沟槽型FET(TrenchFET)结构,这提高了开关速度和热性能。 3. **质量保证**:100%栅极电阻(Rg)测试,符合RoHS指令2002/95/EC,保证了电气安全性和环保要求。 4. **电压规格**: - 阀值电压(VDS):最大耐受电压为20V,确保在负载应用中的安全。 - 门极源极电压(VGS):工作范围在±12V,允许灵活的控制电流调节。 5. **电流能力**: - 连续漏极电流(ID)在25°C时可达6A,在70°C环境下有所下降。 - 脉冲漏极电流(IDM)在25°C下为20A。 - 源极漏极二极管电流(IS)限制在1.75A,同样考虑了温度影响。 6. **散热与功率处理**: - 最大功耗处理能力在70°C时为2.1W,而在25°C下为1.3W,但建议在1.25W和0.8W的限制下运行以保持长期稳定。 - 操作和存储温度范围广泛,从-55°C到150°C,适应各种环境条件。 7. **操作注意事项**: - 在不同温度条件下,电流限制值有所不同,如在5秒的脉宽(t=5s)内操作。 - 需要在最大稳态条件下的功率密度不超过125°C/W,以防止过热。 综上,2SK2273-VB是一款高性能、紧凑型的N-Channel MOSFET,适合在低功耗和高效能电子设备中使用,具有优良的可靠性和散热管理。在设计电路时,必须充分考虑这些规格限制和操作条件,以确保元件的稳定性和使用寿命。

将下面这段源码转换为伪代码:def bfgs(fun, grad, x0, iterations, tol): """ Minimization of scalar function of one or more variables using the BFGS algorithm. Parameters ---------- fun : function Objective function. grad : function Gradient function of objective function. x0 : numpy.array, size=9 Initial value of the parameters to be estimated. iterations : int Maximum iterations of optimization algorithms. tol : float Tolerance of optimization algorithms. Returns ------- xk : numpy.array, size=9 Parameters wstimated by optimization algorithms. fval : float Objective function value at xk. grad_val : float Gradient value of objective function at xk. grad_log : numpy.array The record of gradient of objective function of each iteration. """ fval = None grad_val = None x_log = [] y_log = [] grad_log = [] x0 = asarray(x0).flatten() # iterations = len(x0) * 200 old_fval = fun(x0) gfk = grad(x0) k = 0 N = len(x0) I = np.eye(N, dtype=int) Hk = I old_old_fval = old_fval + np.linalg.norm(gfk) / 2 xk = x0 x_log = np.append(x_log, xk.T) y_log = np.append(y_log, fun(xk)) grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) gnorm = np.amax(np.abs(gfk)) while (gnorm > tol) and (k < iterations): pk = -np.dot(Hk, gfk) try: alpha, fc, gc, old_fval, old_old_fval, gfkp1 = _line_search_wolfe12(fun, grad, xk, pk, gfk, old_fval, old_old_fval, amin=1e-100, amax=1e100) except _LineSearchError: break x1 = xk + alpha * pk sk = x1 - xk xk = x1 if gfkp1 is None: gfkp1 = grad(x1) yk = gfkp1 - gfk gfk = gfkp1 k += 1 gnorm = np.amax(np.abs(gfk)) grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) x_log = np.append(x_log, xk.T) y_log = np.append(y_log, fun(xk)) if (gnorm <= tol): break if not np.isfinite(old_fval): break try: rhok = 1.0 / (np.dot(yk, sk)) except ZeroDivisionError: rhok = 1000.0 if isinf(rhok): rhok = 1000.0 A1 = I - sk[:, np.newaxis] * yk[np.newaxis, :] * rhok A2 = I - yk[:, np.newaxis] * sk[np.newaxis, :] * rhok Hk = np.dot(A1, np.dot(Hk, A2)) + (rhok * sk[:, np.newaxis] * sk[np.newaxis, :]) fval = old_fval grad_val = grad_log[-1] return xk, fval, grad_val, x_log, y_log, grad_log

2023-06-06 上传

function [num,Period, Frequency, Density, CL95]=spectrum(x,mLAG) %%% function for power spectral analysis % usage: [num,Period, Frequency, density, cl95]=spectrum(x,mLAG) % Gong Daoyi 2003.12 xLEN=length(x); SER=x;N=xLEN;mLAGWK=mLAG;mLEN=N;J=mLAG;J1=J+1; %c calculating auto-connection coefficient A=0.0; C=0.; for I=1:N A=A+SER(I);end % I A=A/N; for I=1:N SER(I)=SER(I)-A; C=C+SER(I).^2; end % I C=C/N; for L=1:J CC(L)=0.0; for I=1:N-L CC(L)=CC(L)+SER(I)*SER(I+L); end %I CC(L)=CC(L)./(N-L); CC(L)=CC(L)/C; end %L C=1.0; %c estimating rude power spectra SPE(1)=0.0; for L=1:J-1 SPE(1)=SPE(1)+CC(L); end %L SPE(1)=SPE(1)./J+(C+CC(J))./(2*J); for L=1:J-1 % DO 210 L=1,J-1 SPE(L+1)=0.; for I=1:J-1 SPE(L+1)=SPE(L+1)+CC(I)*cos(pi*L*I/J); end % I SPE(L+1)=2*SPE(L+1)./J+C./J+(-1).^L*CC(J)./J; end % 210 L SPE(J1)=0.0; for I=1:J-1 SPE(J1)=SPE(J1)+(-1).^I*CC(J); end %I SPE(J1)=SPE(J1)/J+(C+(-1).^J*CC(J))/(2*J); %c smoothing power spectra PS(1)=.54*SPE(1)+.46*SPE(2); for L=2:J PS(L)=.23*SPE(L-1)+.54*SPE(L)+.23*SPE(L+1); end %L PS(J1)=.46*SPE(J)+.54*SPE(J1); %c statistical significence of PS W=0.0; for L=1:J-1 W=W+SPE(L+1); end %L W=W/J+(SPE(1)+SPE(J1))/(2*J); if (J > fix(N/2)) W=2.57*W; end if(J == fix(N/2)) W=2.49*W; end if(J < fix(N/2) & J > fix(N/3)) W=2.323*W; end if (J == fix(N/3)) W=2.157*W; end if (J < fix(N/3)) W=1.979*W; end %c the red noice examination for L=1:J1 SK(L)=W*(1-CC(1).^2)/(1+CC(1).^2-2*CC(1)*cos(3.14159*(L-1)/J)); end % L if (CC(1) > 0 & CC(1) >= CC(2) ) %c the white noice examination else for L=1:J1 SK(L)=W; end %L end % if %c calculating the length of cycle T(1)=NaN; for L=2:J1 T(L)=(2.0*J)/(L*1.0-1.0); end % L num=1:J+1;num=num(:)-1; Period=T(:); Frequency=1./T(:); Density=PS(:); CL95=SK(:);

2023-06-01 上传