Matlab太阳能发电仿真模拟教程

版权申诉
0 下载量 194 浏览量 更新于2024-12-09 收藏 35KB ZIP 举报
资源摘要信息:"elec_solar_generator.zip_Solar_matlab solar_matlab太阳能发电仿真_太阳能仿真_" 从给定的文件信息中,我们可以提取到以下知识点: 1. MATLAB软件在太阳能发电领域的应用:该压缩包文件名为“elec_solar_generator.zip”,其中包含了后缀名为“.slx”的文件。这一后缀名表明文件是Simulink模型文件,它是一种基于MATLAB平台的交互式仿真和多域建模环境。在太阳能发电领域,MATLAB和Simulink通常被用来设计、仿真和分析太阳能系统,尤其是光伏系统。 2. 太阳能发电的仿真模拟:文件描述提到“matlab太阳能发电的仿真模拟”,这说明文件中包含的模型用于模拟太阳能发电过程。仿真模拟是理解和优化太阳能发电系统性能的重要工具,它允许工程师在不实际搭建物理系统的情况下,测试和验证系统的电气特性、控制策略和整体效率。 3. 官方例子的修改与应用:描述中提到“在官方例子下进行修改”,这表明文件中的Simulink模型可能是基于MATLAB官方提供的太阳能发电仿真实例进行定制化修改的。官方例子通常包含了基本的太阳能发电系统模型,包括光伏电池、直流-直流转换器、逆变器、控制器和负载等组件。通过修改这些组件,可以模拟不同的运行条件,评估不同技术参数对系统性能的影响。 4. 太阳能仿真的技术细节:太阳能发电仿真通常涉及到光伏电池的数学模型、最大功率点追踪(MPPT)算法、逆变器的效率模型、系统的动态响应和稳定性分析等。通过这些技术细节的仿真分析,工程师可以对系统的功率输出、能量转换效率、温度依赖性、阴影效应和部分遮挡的影响等进行深入研究。 5. 促进技术交流与学习:文件描述还提到“希望对大家有帮助”,这暗示了文件的发布者希望通过分享这个仿真模型,帮助他人学习和掌握太阳能发电仿真的相关知识。这表明了开源精神和共享资源的重要性,尤其是在工程教育和科研领域,这样的资源分享有助于推动技术的发展和进步。 6. 标签中提及的关键术语:在标签“solar matlab_solar matlab太阳能发电仿真 太阳能仿真 太阳能发电”中,我们可以看到几个关键的术语被重复强调。这不仅验证了上述知识点多与太阳能发电仿真的相关性,同时也强调了MATLAB和Simulink在这一领域的广泛使用和重要地位。 综上所述,这个压缩包文件提供了MATLAB环境下的太阳能发电仿真模型,允许用户进行个性化的修改和仿真。它不仅是一个学习工具,也是一份研究资源,有助于工程师和科研人员进行太阳能发电系统的建模、分析和优化。

def train_step(real_ecg, dim): noise = tf.random.normal(dim) for i in range(disc_steps): with tf.GradientTape() as disc_tape: generated_ecg = generator(noise, training=True) real_output = discriminator(real_ecg, training=True) fake_output = discriminator(generated_ecg, training=True) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) ### for tensorboard ### disc_losses.update_state(disc_loss) fake_disc_accuracy.update_state(tf.zeros_like(fake_output), fake_output) real_disc_accuracy.update_state(tf.ones_like(real_output), real_output) ####################### with tf.GradientTape() as gen_tape: generated_ecg = generator(noise, training=True) fake_output = discriminator(generated_ecg, training=True) gen_loss = generator_loss(fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) ### for tensorboard ### gen_losses.update_state(gen_loss) ####################### def train(dataset, epochs, dim): for epoch in tqdm(range(epochs)): for batch in dataset: train_step(batch, dim) disc_losses_list.append(disc_losses.result().numpy()) gen_losses_list.append(gen_losses.result().numpy()) fake_disc_accuracy_list.append(fake_disc_accuracy.result().numpy()) real_disc_accuracy_list.append(real_disc_accuracy.result().numpy()) ### for tensorboard ### # with disc_summary_writer.as_default(): # tf.summary.scalar('loss', disc_losses.result(), step=epoch) # tf.summary.scalar('fake_accuracy', fake_disc_accuracy.result(), step=epoch) # tf.summary.scalar('real_accuracy', real_disc_accuracy.result(), step=epoch) # with gen_summary_writer.as_default(): # tf.summary.scalar('loss', gen_losses.result(), step=epoch) disc_losses.reset_states() gen_losses.reset_states() fake_disc_accuracy.reset_states() real_disc_accuracy.reset_states() ####################### # Save the model every 5 epochs # if (epoch + 1) % 5 == 0: # generate_and_save_ecg(generator, epochs, seed, False) # checkpoint.save(file_prefix = checkpoint_prefix) # Generate after the final epoch display.clear_output(wait=True) generate_and_save_ecg(generator, epochs, seed, False)

2023-06-08 上传

运行以下Python代码:import torchimport torch.nn as nnimport torch.optim as optimfrom torchvision import datasets, transformsfrom torch.utils.data import DataLoaderfrom torch.autograd import Variableclass Generator(nn.Module): def __init__(self, input_dim, output_dim, num_filters): super(Generator, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.num_filters = num_filters self.net = nn.Sequential( nn.Linear(input_dim, num_filters), nn.ReLU(), nn.Linear(num_filters, num_filters*2), nn.ReLU(), nn.Linear(num_filters*2, num_filters*4), nn.ReLU(), nn.Linear(num_filters*4, output_dim), nn.Tanh() ) def forward(self, x): x = self.net(x) return xclass Discriminator(nn.Module): def __init__(self, input_dim, num_filters): super(Discriminator, self).__init__() self.input_dim = input_dim self.num_filters = num_filters self.net = nn.Sequential( nn.Linear(input_dim, num_filters*4), nn.LeakyReLU(0.2), nn.Linear(num_filters*4, num_filters*2), nn.LeakyReLU(0.2), nn.Linear(num_filters*2, num_filters), nn.LeakyReLU(0.2), nn.Linear(num_filters, 1), nn.Sigmoid() ) def forward(self, x): x = self.net(x) return xclass ConditionalGAN(object): def __init__(self, input_dim, output_dim, num_filters, learning_rate): self.generator = Generator(input_dim, output_dim, num_filters) self.discriminator = Discriminator(input_dim+1, num_filters) self.optimizer_G = optim.Adam(self.generator.parameters(), lr=learning_rate) self.optimizer_D = optim.Adam(self.discriminator.parameters(), lr=learning_rate) def train(self, data_loader, num_epochs): for epoch in range(num_epochs): for i, (inputs, labels) in enumerate(data_loader): # Train discriminator with real data real_inputs = Variable(inputs) real_labels = Variable(labels) real_labels = real_labels.view(real_labels.size(0), 1) real_inputs = torch.cat((real_inputs, real_labels), 1) real_outputs = self.discriminator(real_inputs) real_loss = nn.BCELoss()(real_outputs, torch.ones(real_outputs.size())) # Train discriminator with fake data noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim)) fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0, 10)) fake_labels = fake_labels.view(fake_labels.size(0), 1) fake_inputs = self.generator(torch.cat((noise, fake_labels.float()), 1)) fake_inputs = torch.cat((fake_inputs, fake_labels), 1) fake_outputs = self.discriminator(fake_inputs) fake_loss = nn.BCELoss()(fake_outputs, torch.zeros(fake_outputs.size())) # Backpropagate and update weights for discriminator discriminator_loss = real_loss + fake_loss self.discriminator.zero_grad() discriminator_loss.backward() self.optimizer_D.step() # Train generator noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim)) fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0,

281 浏览量

帮我把下面这个代码从TensorFlow改成pytorch import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) validation_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') sample_training_images, _ = next(train_data_gen) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(2, activation='softmax') ]) model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() history = model.fit_generator( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) # 可视化训练结果 acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) model.save("./model/timo_classification_128_maxPool2D_dense256.h5")

180 浏览量