generator_optimizer2.apply_gradients(zip(generator_gradients2, generator2.trainable_variables))
时间: 2024-02-15 09:39:56 浏览: 85
这行代码是用来更新生成器(Generator)的参数的。其中,`generator_gradients2` 是生成器的梯度,由损失函数对生成器参数求导得到。`generator2.trainable_variables` 是生成器的可训练参数。`zip()` 函数将这两个参数打包成元组,传递给 `apply_gradients()` 函数。
`apply_gradients()` 函数是优化器的一个方法,用来应用梯度更新参数。它接收一个元组列表,每个元组包含一个梯度张量和对应的变量张量。在这里,`zip()` 函数打包的元组列表中,每个元组都对应了一个梯度张量和一个可训练变量张量,所以它们被一一对应地传递给了 `apply_gradients()` 函数。
总之,这行代码的作用是根据生成器的梯度更新生成器的可训练参数,从而优化生成器的性能。
相关问题
def train_step(real_ecg, dim): noise = tf.random.normal(dim) for i in range(disc_steps): with tf.GradientTape() as disc_tape: generated_ecg = generator(noise, training=True) real_output = discriminator(real_ecg, training=True) fake_output = discriminator(generated_ecg, training=True) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) ### for tensorboard ### disc_losses.update_state(disc_loss) fake_disc_accuracy.update_state(tf.zeros_like(fake_output), fake_output) real_disc_accuracy.update_state(tf.ones_like(real_output), real_output) ####################### with tf.GradientTape() as gen_tape: generated_ecg = generator(noise, training=True) fake_output = discriminator(generated_ecg, training=True) gen_loss = generator_loss(fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) ### for tensorboard ### gen_losses.update_state(gen_loss) ####################### def train(dataset, epochs, dim): for epoch in tqdm(range(epochs)): for batch in dataset: train_step(batch, dim) disc_losses_list.append(disc_losses.result().numpy()) gen_losses_list.append(gen_losses.result().numpy()) fake_disc_accuracy_list.append(fake_disc_accuracy.result().numpy()) real_disc_accuracy_list.append(real_disc_accuracy.result().numpy()) ### for tensorboard ### # with disc_summary_writer.as_default(): # tf.summary.scalar('loss', disc_losses.result(), step=epoch) # tf.summary.scalar('fake_accuracy', fake_disc_accuracy.result(), step=epoch) # tf.summary.scalar('real_accuracy', real_disc_accuracy.result(), step=epoch) # with gen_summary_writer.as_default(): # tf.summary.scalar('loss', gen_losses.result(), step=epoch) disc_losses.reset_states() gen_losses.reset_states() fake_disc_accuracy.reset_states() real_disc_accuracy.reset_states() ####################### # Save the model every 5 epochs # if (epoch + 1) % 5 == 0: # generate_and_save_ecg(generator, epochs, seed, False) # checkpoint.save(file_prefix = checkpoint_prefix) # Generate after the final epoch display.clear_output(wait=True) generate_and_save_ecg(generator, epochs, seed, False)
下面是将上述代码转换为PyTorch代码的示例:
```python
def train_step(real_ecg, dim):
noise = torch.randn(dim)
for i in range(disc_steps):
generated_ecg = generator(noise, training=True)
real_output = discriminator(real_ecg, training=True)
fake_output = discriminator(generated_ecg, training=True)
disc_loss = discriminator_loss(real_output, fake_output)
discriminator.zero_grad()
disc_loss.backward()
discriminator_optimizer.step()
### for tensorboard ###
disc_losses.update(disc_loss)
fake_disc_accuracy.update(torch.zeros_like(fake_output), fake_output)
real_disc_accuracy.update(torch.ones_like(real_output), real_output)
#######################
for i in range(gen_steps):
generated_ecg = generator(noise, training=True)
fake_output = discriminator(generated_ecg, training=True)
gen_loss = generator_loss(fake_output)
generator.zero_grad()
gen_loss.backward()
generator_optimizer.step()
### for tensorboard ###
gen_losses.update(gen_loss)
#######################
def train(dataset, epochs, dim):
for epoch in tqdm(range(epochs)):
for batch in dataset:
train_step(batch, dim)
disc_losses_list.append(disc_losses.avg)
gen_losses_list.append(gen_losses.avg)
fake_disc_accuracy_list.append(fake_disc_accuracy.avg)
real_disc_accuracy_list.append(real_disc_accuracy.avg)
### for tensorboard ###
# with disc_summary_writer.as_default():
# tf.summary.scalar('loss', disc_losses.result(), step=epoch)
# tf.summary.scalar('fake_accuracy', fake_disc_accuracy.result(), step=epoch)
# tf.summary.scalar('real_accuracy', real_disc_accuracy.result(), step=epoch)
# with gen_summary_writer.as_default():
# tf.summary.scalar('loss', gen_losses.result(), step=epoch)
#######################
disc_losses.reset()
gen_losses.reset()
fake_disc_accuracy.reset()
real_disc_accuracy.reset()
#######################
# Save the model every 5 epochs
# if (epoch + 1) % 5 == 0:
# generate_and_save_ecg(generator, epochs, seed, False)
# checkpoint.save(file_prefix = checkpoint_prefix)
# Generate after the final epoch
# display.clear_output(wait=True)
# generate_and_save_ecg(generator, epochs, seed, False)
```
注意:上述代码仅作为示例,可能需要根据实际情况进行调整和修改。
def train(notes, chords, generator, discriminator, gan, loss_fn, generator_optimizer, discriminator_optimizer): num_batches = notes.shape[0] // BATCH_SIZE for epoch in range(NUM_EPOCHS): for batch in range(num_batches): # 训练判别器 for _ in range(1): # 生成随机的噪声 noise = np.random.normal(0, 1, size=(BATCH_SIZE, LATENT_DIM)) # 随机选择一个真实的样本 idx = np.random.randint(0, notes.shape[0], size=BATCH_SIZE) real_notes, real_chords = notes[idx], chords[idx] # 生成假的样本 fake_notes = generator(noise) # 计算判别器的损失函数 real_loss = loss_fn(tf.ones((BATCH_SIZE, 1)), discriminator([real_notes, real_chords])) fake_loss = loss_fn(tf.zeros((BATCH_SIZE, 1)), discriminator([fake_notes, chords])) total_loss = real_loss + fake_loss # 计算判别器的梯度并更新参数 grads = tf.gradients(total_loss, discriminator.trainable_variables) discriminator_optimizer.apply_gradients(zip(grads, discriminator.trainable_variables))) # 训练生成器 for _ in range(1): # 生成随机的噪声 noise = np.random.normal(0, 1, size=(BATCH_SIZE, LATENT_DIM)) # 计算生成器的损失函数 fake_notes = generator(noise) fake_loss = loss_fn(tf.ones((BATCH_SIZE, 1)), discriminator([fake_notes, chords])) # 计算生成器的梯度并更新参数 grads = tf.gradients(fake_loss, generator.trainable_variables) generator_optimizer.apply_gradients(zip(grads, generator.trainable_variables))) # 打印损失函数和精度 print('Epoch {}, Batch {}/{}: Loss={:.4f}'.format(epoch+1, batch+1, num_batches, total_loss)) # 保存模型 if (epoch+1) % 10 == 0: generator.save('generator.h5') discriminator.save('discriminator.h5') gan.save('gan.h5')
这段代码实现了一个基于GAN的音乐生成模型的训练过程。主要流程如下:
1. 根据每个epoch的训练次数(NUM_EPOCHS)和每个batch的大小(BATCH_SIZE),计算出总共需要训练的batch数(num_batches)。
2. 对于每个epoch和每个batch:
a. 从训练数据集(notes和chords)中随机选择BATCH_SIZE个样本(real_notes和real_chords)作为真实样本,同时生成BATCH_SIZE个随机噪声(noise)作为假样本。
b. 训练判别器(discriminator):对于每个样本,计算其对应的损失函数(real_loss或fake_loss),并将它们相加得到判别器的总损失(total_loss)。然后计算判别器的梯度(grads),并使用判别器优化器(discriminator_optimizer)来更新判别器的参数(discriminator.trainable_variables)。
c. 训练生成器(generator):对于每个生成的假样本,计算其对应的损失函数(fake_loss),并计算生成器的梯度(grads),使用生成器优化器(generator_optimizer)来更新生成器的参数(generator.trainable_variables)。
d. 打印当前训练的epoch、batch和总损失(total_loss)。
e. 如果当前epoch是10的倍数,保存生成器模型(generator.h5)、判别器模型(discriminator.h5)和GAN模型(gan.h5)。
这个模型是一个有监督的生成模型,输入是随机噪声和和弦(chords),输出是钢琴音符(notes)。其中,判别器的作用是判断输入的钢琴音符是否是真实的,生成器的作用是将随机噪声和和弦转换为更真实的钢琴音符。GAN则是将判别器和生成器相结合,使得生成器能够生成更真实的钢琴音符,同时让判别器更好地判断真假。
阅读全文