解释一下这段代码from sklearn.metrics import accuracy_score, confusion_matrix
时间: 2023-05-24 10:06:53 浏览: 322
SVM(sklearn版).zip
这段代码导入了 scikit-learn 中的 metrics 模块,其中包括了评估分类模型性能的一些函数。其中,accuracy_score 函数可以计算分类准确率(分类正确率),confusion_matrix 函数可以计算分类混淆矩阵(confusion matrix)。
示例代码如下:
```python
from sklearn.metrics import accuracy_score, confusion_matrix
y_true = [0, 0, 1, 1, 1]
y_pred = [1, 0, 1, 1, 0]
# 计算准确率
accuracy = accuracy_score(y_true, y_pred)
print('Accuracy:', accuracy)
# 计算混淆矩阵
conf_mat = confusion_matrix(y_true, y_pred)
print('Confusion Matrix:\n', conf_mat)
```
输出结果如下:
```
Accuracy: 0.6
Confusion Matrix:
[[1 1]
[1 2]]
```
其中,准确率为 0.6,表示模型将 5 个样本中的 3 个分类正确;混淆矩阵为:
```
[[1 1]
[1 2]]
```
表示真实标签为 0 的有 2 个,其中一个被预测为 1,一个被正确预测为 0;真实标签为 1 的有 3 个,其中一个被错误预测为 0,两个被正确分类为 1。
阅读全文