from sklearn.metrics import accuracy_score,f1_score,confusion_matrix,classification_report print(classification_report(y_test,prediction["MultinomialNB"],target_names=["Ham","Spam"]))
时间: 2024-02-29 15:54:53 浏览: 205
你提供的代码使用sklearn.metrics库中的函数来计算模型的性能指标,包括准确率、F1值、混淆矩阵和分类报告。classification_report函数计算并打印模型的分类报告,其中包括每个类别的精确度、召回率、F1值和支持数。其中,y_test是测试数据的真实标签,prediction["MultinomialNB"]是使用MultinomialNB模型预测出的标签,target_names=["Ham","Spam"]表示两个类别的名称。
相关问题
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix score1=accuracy_score(y_train,x_blend) y_pred=meta_model.predict(x_test) score2=accuracy_score(y_test,y_pred) print(score1,score2)报错
这段代码报错的原因可能是由于 `y_train` 和 `x_blend` 的维度不匹配导致无法计算准确率(accuracy)。请确保 `y_train` 和 `x_blend` 都具有相同的样本数量。
另外,如果 `x_blend` 是一个模型的预测结果,它应该是一个一维数组(或列表),而不是多维数组。可以尝试使用 `reshape()` 函数将其转换为一维数组。
以下是一个修正后的示例代码:
```python
from sklearn.metrics import accuracy_score
# 假设 x_blend 是一个二维数组,需要转换为一维数组
x_blend = x_blend.reshape(-1)
score1 = accuracy_score(y_train, x_blend)
y_pred = meta_model.predict(x_test)
score2 = accuracy_score(y_test, y_pred)
print(score1, score2)
```
如果问题仍然存在,请提供完整的错误消息以便我更好地帮助您解决问题。
怎么解决from sklearn.metrics import accuracy_score, classification_report, confusion_matrix x_pred=lr.predict(x_train) score1=accuracy_score(y_train,x_pred) y_pred=lr.predict(x_test) score2=accuracy_score(y_test,y_pred) print(score1 , score2)问题
根据你给出的代码,你想计算训练集和测试集上的准确率(accuracy)。如果你遇到了问题,请提供具体的错误信息或者描述问题的详细情况,这样我可以更好地帮助你。
不过,基于你提供的代码片段,我注意到你导入了 `accuracy_score` 函数,并且使用它计算了训练集和测试集上的准确率。然后,你打印了这两个准确率分数 `score1` 和 `score2`。
如果你遇到了问题,请提供具体的错误信息或者描述问题的详细情况,这样我可以更好地帮助你解决问题。
阅读全文