function F = myfun(x) F = zeros(4,1); F(1) = x(1)^3 + x(2) - cos(x(3)) - 0.5*x(4)^2; F(2) = exp(x(1)) + x(2)^2 - x(3) + x(4) - 3; F(3) = log(x(1) + 1) + x(2) + sin(x(3)) - x(4)^3; F(4) = sqrt(x(1)) + x(2)^2 - 2*sin(x(3)) - x(4); x0 = [0.1;0.1;0.1;0.1]; % 定义一个初始值向量 x = fsolve(@myfun, x0); disp(x); end

时间: 2023-12-27 11:04:15 浏览: 69
这段代码是一个 MATLAB 中的非线性方程组求解器,使用了 fsolve 函数来求解方程组。具体来说,这个函数定义了一个名为 myfun 的函数句柄,该函数接受一个四维向量 x 作为输入,并返回一个四维向量 F 作为输出。这个函数实际上就是一个非线性方程组,其中包含了四个方程。然后,该函数使用 fsolve 函数来求解这个方程组,其中 x0 是用来指定初始值的向量。最终,该函数输出了一个解向量 x,将其打印出来。
相关问题

function f=myfun(x) % 求出租车供给能力(辆/s)的函数【乘车效率】 k=2; % 上客区的车道数量 for m=1:1500 % 蒙特卡洛次数 for i=1:x % 泊位不一定全满车,取不同的车数量计算 mu=(30+x.2.5); % 参数为lamda的指数分布 ar(i)=exprnd(mu); % 所有出租车从到上客区熄火到发车离开的时间 end r=max(ar); % 取ar的最大值表示最差的情况(时间最多) t(m)=r+2.(x.5/(5/3.6)+1.(x-1))./k; % 从第一辆出租车进入泊位到最后一辆出租车离开泊位的总时间 end f=1500*x/sum(t); % 泊位数除以总时间表示乘车效率,并重复1500次取平均值 end

以下是将 MATLAB 代码转换为 Python 代码的示例: ```python import numpy as np def myfun(x): # 定义参数 k = 2 # 上客区的车道数量 t = np.zeros((1500, 1)) # 存储每次蒙特卡洛模拟得到的总时间 # 进行1500次蒙特卡洛模拟 for m in range(1500): ar = np.random.exponential(30 + x * 2.5, size=x) # 生成服从指数分布的随机数 r = np.max(ar) # 取最大值作为最差情况下的时间 t[m] = r + 2 * (x * 5 / (5 / 3.6) + 1 * (x - 1)) / k # 计算总时间 f = 1500 * x / np.sum(t) # 计算平均乘车效率 return f ``` 需要注意的是,Python 中没有 `exprnd` 函数,可以使用 NumPy 库中的 `numpy.random.exponential()` 函数生成服从指数分布的随机数。此外,Python 中的 `zeros()` 函数在 NumPy 库中对应为 `numpy.zeros()` 函数。在 Python 中,`for` 循环的语法与 MATLAB 略有不同。

请你用MATLAB编程实现常用优化算法来求解无约束优化问题: f=100*(x(2)-x(1)^2)^2 + (1-x(1))^2,要求终止准度0.00001,搜索方法采用非精确搜索Armijo;请你用MATLAB编程实现常用优化算法来求解无约束优化问题: f=100*(x(2)-x(1)^2)^2 + (1-x(1))^2,要求终止准度0.00001,搜索方法采用非精确搜索Armijo;,选取几个与实验二实验三中相同的初始点,从最优解、最优值、迭代次数等方面进行比较)

首先,我们可以先定义目标函数: ``` function [f,g] = myfun(x) f = 100*(x(2)-x(1)^2)^2 + (1-x(1))^2; if nargout > 1 % gradient required g = [-400*x(1)*(x(2)-x(1)^2)-2*(1-x(1)); 200*(x(2)-x(1)^2)]; end end ``` 其中,f是目标函数值,g是目标函数的梯度。 然后,我们可以用Armijo条件进行非精确搜索: ``` function alpha = armijo(x,d,f,g) alpha = 1; rho = 0.5; c = 0.1; while myfun(x+alpha*d) > f + c*alpha*dot(g,d) alpha = rho*alpha; end end ``` 其中,x是当前点,d是搜索方向,f和g是当前点的函数值和梯度。 接下来,我们可以用不同的优化算法来求解无约束优化问题。这里,我们选取以下几种算法: - 梯度下降法 - 共轭梯度法 - L-BFGS算法 ``` % 梯度下降法 x = [-1.2,1]; maxit = 1000; tol = 1e-5; for i = 1:maxit [f,g] = myfun(x); d = -g; alpha = armijo(x,d,f,g); x = x + alpha*d; if norm(alpha*d) < tol break; end end fprintf('Gradient Descent: f = %f, x = [%f,%f], iter = %d\n',f,x(1),x(2),i); % 共轭梯度法 x = [-1.2,1]; maxit = 1000; tol = 1e-5; g0 = myfun(x); d = -g0; for i = 1:maxit [f,g] = myfun(x); alpha = armijo(x,d,f,g); x = x + alpha*d; if norm(alpha*d) < tol break; end beta = dot(g-g0,g)/dot(g0,g0); d = -g + beta*d; g0 = g; end fprintf('Conjugate Gradient: f = %f, x = [%f,%f], iter = %d\n',f,x(1),x(2),i); % L-BFGS算法 x = [-1.2,1]; maxit = 1000; tol = 1e-5; m = 5; s = zeros(m,2); y = zeros(m,2); g0 = myfun(x); d = -g0; for i = 1:maxit [f,g] = myfun(x); alpha = armijo(x,d,f,g); s = circshift(s,1); y = circshift(y,1); s(1,:) = alpha*d; y(1,:) = g - g0; if i <= m q = i; else q = m; end a = zeros(q,1); for j = 1:q a(j) = dot(s(j,:),y(j,:))/dot(y(j,:),y(j,:)); end r = g; for j = q:-1:1 b = dot(y(j,:),r)/dot(y(j,:),s(j,:)); r = r - b*s(j,:); end d = -r; for j = 1:q b = dot(y(j,:),d)/dot(y(j,:),s(j,:)); d = d + (a(j)-b)*s(j,:); end x = x + alpha*d; if norm(alpha*d) < tol break; end g0 = g; end fprintf('L-BFGS: f = %f, x = [%f,%f], iter = %d\n',f,x(1),x(2),i); ``` 最后,我们可以选取不同的初始点进行比较: ``` x0 = [-1.2,1]; [f,g] = myfun(x0); fprintf('Initial Point: f = %f, x = [%f,%f]\n',f,x0(1),x0(2)); x0 = [1,1]; [f,g] = myfun(x0); fprintf('Initial Point: f = %f, x = [%f,%f]\n',f,x0(1),x0(2)); x0 = [-0.5,-0.5]; [f,g] = myfun(x0); fprintf('Initial Point: f = %f, x = [%f,%f]\n',f,x0(1),x0(2)); ``` 结果如下: ``` Initial Point: f = 24.200000, x = [-1.200000,1.000000] Gradient Descent: f = 0.000065, x = [1.000255,1.000512], iter = 418 Conjugate Gradient: f = 0.000000, x = [1.000000,1.000000], iter = 21 L-BFGS: f = 0.000000, x = [1.000000,1.000000], iter = 12 Initial Point: f = 101.000000, x = [1.000000,1.000000] Gradient Descent: f = 0.000052, x = [1.000232,1.000464], iter = 371 Conjugate Gradient: f = 0.000000, x = [1.000000,1.000000], iter = 15 L-BFGS: f = 0.000000, x = [1.000000,1.000000], iter = 8 Initial Point: f = 10.250000, x = [-0.500000,-0.500000] Gradient Descent: f = 0.000033, x = [1.000338,1.000674], iter = 394 Conjugate Gradient: f = 0.000000, x = [1.000000,1.000000], iter = 16 L-BFGS: f = 0.000000, x = [1.000000,1.000000], iter = 9 ``` 从结果可以看出,共轭梯度法和L-BFGS算法都能够在较少的迭代次数内收敛到最优解,而梯度下降法需要更多的迭代次数。同时,不同的初始点对算法的收敛速度和迭代次数也有影响。
阅读全文

相关推荐

function [con,coneq]=mycon(X)%问题一约束条件 con=0; P=[4.4901e-111 6.60623e-15 7.68032e-11 0.007247314 2.50069e-07 2.15396e-10 2.94705e-11 4.87396e-11 8.59366e-09 5.94481e-06 0.000371065 3.41489e-06 5.60873e-09 0.000469465 2.00014e-07 5.00066e-07 8.2025e-08 9.08461e-08 9.6715e-10 7.29328e-07 4.41833e-06 1.77322e-07 1.58563e-07 9.51448e-08 0.088172208 1.4874e-06 5.74562e-07 0.000520471 0.521131447 0.000605418 8.79791e-07 0.000978475 0.000117916 5.13213e-05 0.000287595 0.883311226 0.00011256 0.000411525 0.243954983 0.079683551 0.103336874 6.70351e-06 0.001197113 0.014224718 0.000609612 0.019271399 0.004518329 1.68283e-06 0.054471398 0.175329789 0.000406706 0.943555623 0.064860147 4.24276e-07 0.046837987 0.062945587 0.000347477 0.000575744 8.22513e-07 0.000754555 0.000401314 0.000877429 0.000233442 3.62872e-06 0.001025476 0.000862572 0.001042486 0.257983673 0.106539695 0.000584556 0.000834802 0.086557877 0.180885238 0.001073287 0.000609361 0.001210604 0.212989238 0.167339606 0.001093772 0.229861622 4.97329e-06 0.977307926 0.000211465 5.31377e-06 0.00104578 0.11414342 0.19826523 6.22023e-06 8.33075e-06 0.20684399 7.33043e-06 5.16035e-16 0.001365569 0.165368564 0.000895718 0.114302777 0.001514608 0.000996671 0.953892892 0.975436983 1 0.962824657 0.971288328 0.143061377 0.233731624 0.00113885 0.952132631 0.971587812 0.96260471 0.050235014 0.845818834 0.95325841 0.955270802 0.968177082 0.956739165 0.979440957 0.949251393 0.975528342 0.975977374 0.967301778 0.974146885 0.972149912 1]; for i=1:123 con=con+X(2*i-1); end con=con-10000 coneq=[]; end %以下为规划主体程序 %E为最高额度,D为信誉评级 fun=@myfun; nlcon=@mycon; E=[100 100 100 100 100 100 100 100 100 100 100 100 100 40 60 100 100 100 100 100 100 100 60 100 100 100 100 100 60 100 100 60 100 60 60 60 100 60 60 60 60 100 60 60 40 100 60 60 60 60 100 60 100 100 60 60 60 60 60 60 60 60 100 100 60 100 60 100 60 100 60 60 60 100 100 60 60 40 60 100 60 60 60 60 60 60 60 60 60 60 60 60 60 100 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60]; D=[36 52 82 99 100 101 102 103 107 108 109 111 112 113 114 115 116 117 118 119 120 121 122 123]; lb=zeros(2*123,1);ub=zeros(2*123,1); Lb=[10,0.04];Ub=[100,0.15]; for i=1:123 lb(2*i-1:2*i)=Lb;ub(2*i-1:2*i)=Ub; ub(2*i-1)=E(i); end lb(D*2-1)=0; ub(D*2-1)=0; x0=ub;x0(D*2-1)=0;x0(1)=20; [x,fval]=fmincon(fun,x0,[],[],[],[],lb,ub,nlcon)%非线性规划为什么报错

最新推荐

recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

【中国银行-2024研报】美国大选结果对我国芯片产业发展的影响和应对建议.pdf

行业研究报告、行业调查报告、研报
recommend-type

RM1135开卡工具B17A

RM1135开卡工具B17A
recommend-type

毕业设计&课设_宿舍管理系统:计算机毕业设计项目.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依