from pyecharts import options as opts from pyecharts.charts import Calendar import os import pandas as pd data=pd.read_csv("E:\数据可视化\实验数据\实验数据\案例1:美国枪击暴力\数据\\fatal_encounters_dot_org .csv") data_2019=data[(data['Date (Year)']=='2019')] month=[] date=list(data_2019['Date&Description']) for i in range(len(date)): strs=str(date[i]) m=strs.split("/")[0] month.append(m) data_2019['month']=month day=[] for i in range(len(date)): strs=str(date[i]) d=strs.split("/")[1] month.append(d) data_2019['day']=day data_2019['year']=date_2019['Date (Year)'] data_2019['date']=pd.to_datetime(data_2019[['year','month','day']]) data_c=data_2019['date'].value_counts() date_c = data_c.index value= data_c.values z= zip( date_c,value) data_ca=pd.DataFrame(z).values.tolist() c =( Calendar () .add ("",data_ca,calendar_opts=opts.CalendarOpts(range_="2019")) .set_global_opts( title_opts=opts.TitleOpts(title ="2019年每天遭受致命伤害人数"), visualmap_opts=opts.VisualMapOpts( max_=20, min_=0, orient ="horizontal", is_piecewise = True , pos_top="230px",pos_left="100px", ), ) ) c.render() os.system('render.html')

时间: 2023-06-14 12:05:36 浏览: 236
根据你的代码,你使用了 pyecharts 库来绘制 2019 年每天遭受致命伤害人数的日历图。具体实现方法是: 1. 读取数据文件 `fatal_encounters_dot_org .csv` 中的 2019 年数据。 2. 从日期中提取出月份和日期,添加到数据中。 3. 将年、月、日三列转换为 `datetime` 类型的日期列。 4. 对日期列进行统计,得到每天遭受致命伤害人数。 5. 使用 `pyecharts` 库中的 `Calendar` 类创建日历图,设置为 2019 年的日历,添加统计好的数据。 6. 设置全局选项,包括标题和可视化选项。 7. 使用 `render()` 函数将图表渲染为 HTML 文件。 8. 使用 `os.system()` 函数在浏览器中打开渲染好的 HTML 文件。 需要注意的是,代码中有一处错误,第 12 行 `month.append(d)` 应该改为 `day.append(d)`。
相关问题

解释这段代码import pyecharts pyecharts.globals._WarningControl.ShowWarning = False import warnings warnings.filterwarnings('ignore') from pyecharts import options as opts from pyecharts.charts import Line import pandas as pd pf = pd.read_csv("global_data.csv",error_bad_lines=False) y = pf['票房'].value_counts().index.tolist() x = pf['国家'].value_counts().index.tolist() line = ( Line() .add_xaxis(x[0:6]) .add_yaxis("", y[0:6]) .set_global_opts(title_opts=opts.TitleOpts(title="票房排名")) ) line.render_notebook()

这段代码的作用是利用 pyecharts 库绘制一个票房排名前六的国家的折线图,并将其嵌入到 Jupyter Notebook 中展示。具体实现过程如下: 1. 首先,将 pyecharts 库中的 _WarningControl.ShowWarning 设置为 False,禁止 pyecharts 库中的警告信息输出。 2. 然后,利用 warnings 库将所有警告信息都忽略,避免在运行过程中出现警告信息干扰。 3. 接着,通过 pandas 库读取名为 "global_data.csv" 的 CSV 文件,并将票房排名前六的国家的名称和对应的票房值分别存入列表 x 和 y 中。 4. 使用 pyecharts 库中的 Line 类创建一个折线图,并将 x 和 y 的前六个元素作为横纵坐标的数据。 5. 最后,设置折线图的标题为 "票房排名" 并将其嵌入到 Jupyter Notebook 中进行展示。

from pyecharts import options as opts from pyecharts.charts import Bar from pyecharts.charts import Line

这是一个关于使用pyecharts库绘制柱状图和折线图的代码。你可以使用以下代码来创建一个柱状图和折线图: ```python from pyecharts import options as opts from pyecharts.charts import Bar, Line # 创建一个柱状图 bar_chart = ( Bar() .add_xaxis(["A", "B", "C", "D", "E"]) .add_yaxis("Series 1", [10, 20, 30, 40, 50]) .add_yaxis("Series 2", [5, 15, 25, 35, 45]) .set_global_opts(title_opts=opts.TitleOpts(title="Bar Chart")) ) # 创建一个折线图 line_chart = ( Line() .add_xaxis(["A", "B", "C", "D", "E"]) .add_yaxis("Series 1", [10, 20, 30, 40, 50]) .add_yaxis("Series 2", [5, 15, 25, 35, 45]) .set_global_opts(title_opts=opts.TitleOpts(title="Line Chart")) ) # 渲染图表 bar_chart.render("bar_chart.html") line_chart.render("line_chart.html") ``` 这段代码使用pyecharts库创建了一个柱状图和一个折线图。你可以根据需要修改x轴和y轴的标签以及对应的数据。最后,调用`render`方法将图表渲染为HTML文件。你可以通过打开生成的HTML文件来查看图表。
阅读全文

相关推荐

from pyecharts.charts import Line from pyecharts.charts import Bar from pyecharts.charts import Pie from pyecharts.charts import Grid from pyecharts import options as opts # 柱状图 from pyecharts.charts import Bar from pyecharts import options as opts bar=Bar() bar.add_xaxis(["衬衫","毛衣","领带","裤子","风衣","高跟鞋","袜子"]) bar.add_yaxis("商家A",[120,56,28,98,129,28,107]) bar.add_yaxis("商家B",[60,140,153,145,160,70,54]) bar.set_global_opts(title_opts=opts.TitleOpts(title="商家A和商家B销售情况柱状图")) bar.render() # 折线图 from pyecharts.charts import Line from pyecharts import options as opts from pyecharts.globals import ThemeType,RenderType x_data=['1月','2月','3月','4月','5月','6月'] y_data1=[2,4.9,7,23.2,25.6,76.7] y_data2=[2.6,5.9,9,26.4,28.7,70.7] y_data3=[2,2.2,3.3,4.5,6.3,10.2] line=( Line() .add_xaxis(x_data) .add_yaxis('蒸发量',y_data1) .add_yaxis('降水量',y_data2) .add_yaxis('平均温度',y_data3) ) line.render("zhexiantu.html") # 饼图 from pyecharts.faker import Faker from pyecharts.charts import Pie import pyecharts.options as opts Faker.choose() Faker.values() list(zip(Faker.choose(),Faker.values())) pie=( Pie() .add('',[list(x) for x in zip(["衬衫","毛衣","领带","裤子","风衣","高跟鞋","袜子"],[120,56,28,98,129,28,107])],center=[450,300],radius=[0,100]) ) pie.set_global_opts(title_opts=opts.TitleOpts(title='销售情况饼图',subtitle='商家A')) pie.render() # 多图布局 grid=( Grid() .add(bar,grid_opts=opts.GridOpts(pos_left="70%")) .add(line,grid_opts=opts.GridOpts(pos_right="70%")) .add(pie,grid_opts=opts.GridOpts(pos_bottom="80%")) ) grid.render("2102010216-刘云龙.html")换成matplotlib和pandas

最新推荐

recommend-type

基于springboot的酒店管理系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

蓄电池与超级电容混合储能并网matlab simulink仿真模型 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电

蓄电池与超级电容混合储能并网matlab simulink仿真模型。 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电,soc较低时状态与其相反。 (2)蓄电池和超级电容分别采用单环恒流控制,研究了基于超级电容的SOC分区限值管理策略,分为放电下限区,放电警戒区,正常工作区,充电警戒区,充电上限区。 (3)采用三相逆变并网,将直流侧800v电压逆变成交流311v并网,逆变采用电压电流双闭环pi控制,pwm调制。 附有参考资料。
recommend-type

017 - 搞笑一句话台词.docx

017 - 搞笑一句话台词
recommend-type

基于微信小程序的购物系统+php后端毕业源码案例设计全部资料+详细文档.zip

【资源说明】 基于微信小程序的购物系统+php后端毕业源码案例设计全部资料+详细文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依