(1)编写函数IsPrime,判断整数n是否为素数; (2)验证“歌德巴郝猜想:任意一个大于等于4的偶数可写成两个素数之和”。
时间: 2023-12-10 19:38:44 浏览: 75
函数 可以判断一个数是不是素数
(1)代码如下:
```python
def IsPrime(n):
if n < 2:
return False
for i in range(2, int(n**0.5)+1):
if n % i == 0:
return False
return True
```
函数IsPrime的参数是整数n,返回值为布尔类型,表示n是否为素数。判断一个数n是否为素数,只需要判断n能否被2到n的平方根之间的整数整除即可。
(2)验证“歌德巴郝猜想”,可以使用双重循环枚举两个素数,判断它们的和是否等于原来的偶数。代码如下:
```python
def VerifyGoldbach(n):
if n < 4 or n % 2 != 0:
return False
for i in range(2, n//2+1):
if IsPrime(i) and IsPrime(n-i):
return True
return False
```
函数VerifyGoldbach的参数是一个大于等于4的偶数n,返回值为布尔类型,表示n是否可以写成两个素数之和。首先判断n是否为偶数,如果不是则返回False;然后从2到n/2枚举一个素数i,判断n-i是否也是素数,如果都是素数,则返回True,否则返回False。
阅读全文