background = cv2.cvtColor(background, cv2.COLOR_BGR2RGB)
时间: 2023-10-27 09:30:50 浏览: 64
This code converts the background image from BGR color space to RGB color space using the cv2.cvtColor function from the OpenCV library.
BGR (Blue, Green, Red) is the default color space used by OpenCV, while RGB (Red, Green, Blue) is the more common color space used in digital imaging.
Converting the image to RGB allows it to be displayed more accurately on devices that use RGB color space, such as computer monitors and mobile devices.
相关问题
可是t = threading.Thread(target=self.windows_display)使用摄像头会闪烁
闪烁可能是由于您的UI线程和摄像头线程之间的竞争条件造成的。为了解决这个问题,您可以尝试使用`Queue`来传递图像,而不是直接在UI线程和摄像头线程之间共享数据。具体而言,您可以在摄像头线程中将每个图像放入队列中,然后在UI线程中从队列中读取图像并更新画布。
下面是修改后的代码示例:
```
import threading
import cv2
import tkinter as tk
from tkinter import *
from PIL import Image, ImageTk
from queue import Queue
from Background.Thread_Demo import Thread_data
from Data_demo import data_demo
class Camera():
def __init__(self, top):
self.top = top
self.h = int(data_demo.window_height // 1.5)
self.w = int(data_demo.window_width // 1.74)
self.canvas2 = Canvas(self.top, bg='LightSkyBlue', width=self.w, height=self.h,
highlightthickness=2, highlightbackground='Black')
self.canvas2.place(relx=0.0, rely=0.032)
self.label = tk.Label(self.canvas2, text='摄像头显示区!', font=("黑体", 25), width=15, height=1)
self.label.place(relx=0.32, rely=0.50, anchor='nw')
self.queue = Queue() # 创建一个队列
def Firing_run(self, button_id):
self.bool = True
self.label.destroy()
self.cap = cv2.VideoCapture(0)
t = threading.Thread(target=self.windows_display)
t.start()
button_id.config(text='关闭摄像头', command=lambda: self.Cease_stop(button_id))
def Cease_stop(self, button_id):
self.bool = False
button_id.config(text='打开摄像头', command=lambda: self.Firing_run(button_id))
def windows_display(self):
while self.bool:
ref, frame = self.cap.read()
cv2.waitKey(1)
if ref:
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image1 = Image.fromarray(image)
image2 = image1.resize((self.w, self.h), Image.ANTIALIAS)
photo = ImageTk.PhotoImage(image=image2)
self.queue.put(photo) # 将图像放入队列中
def update_canvas(self):
if not self.queue.empty():
photo = self.queue.get() # 从队列中获取图像
self.canvas2.create_image(0, 0, image=photo, anchor=tk.NW)
self.canvas2.after(15, self.update_canvas) # 定时更新画布
root = Tk()
camera = Camera(root)
button_id = Button(root, text='打开摄像头', command=lambda: camera.Firing_run(button_id))
button_id.place(relx=0.01, rely=0.01, anchor='nw')
camera.update_canvas() # 启动定时更新画布的函数
root.mainloop()
```
在这个修改后的版本中,我们创建了一个队列,将每个帧的图像放入队列中。然后,在UI线程中,我们使用`update_canvas`函数从队列中获取图像并更新画布。我们使用`after`方法启动定时器,以便每隔一定时间更新画布。这样可以避免UI线程和摄像头线程之间的竞争条件,从而消除闪烁问题。
多目标轴2端点定位 startf=353;endf=1500; for i=startf:1:endf I1 =read(xyloObj,i);%读取每一帧 % figure,imshow(I1); I1=im2double(rgb2gray(I1))-Ibj;%减去背景帧 bw1=im2bw(I1,25/255);%二值化处理,灰度值大于25设置为白色,小于等于25设置为黑色 bwAreaOpenBW =bwareaopen(bw1,10);%将二值图像bw1中的小区域(面积小于等于10个像素)去除,得到一个新的二值图像bwAreaOpenBW。这个操作可以消除二值图像中一些不必要的小区域,保留需要的大区域 [L,n]=bwlabel(bwAreaOpenBW,8); for j=1:1:n [r, c] = find(L==j); rc = [r c]; u=size(r); zhou2=fitlm(rc(:,2),rc(:,1)); %拟合直线 b1(i,j)=zhou2.Coefficients.Estimate(1,1); b2(i,j)=zhou2.Coefficients.Estimate(2,1); minzhi(i,j)=min(rc(:,2)); maxzhi(i,j)=max(rc(:,2)); % y = minzhi(i,j):1:maxzhi(i,j); % x = b1(i,j)+b2(i,j).*y; % plot(y,x);hold on; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2个端点 duan1x(i,j)=b1(i,j)+b2(i,j).*minzhi(i,j); duan1y(i,j)=minzhi(i,j); duan2x(i,j)=b1(i,j)+b2(i,j).*maxzhi(i,j); duan2y(i,j)=maxzhi(i,j); % plot(minzhi,b1+b2.*minzhi,'r*');hold on; % plot(maxzhi,b1+b2.*maxzhi,'r*');hold on; end end转换为vs代码,用opencv库
下面是将上述MATLAB代码转换为OpenCV代码的示例:
```cpp
#include <opencv2/opencv.hpp>
using namespace cv;
int main()
{
int startf = 353, endf = 1500;
for (int i = startf; i <= endf; i++)
{
Mat I1 = imread("frame" + std::to_string(i) + ".jpg");
Mat Ibj = imread("background.jpg"); // 背景帧
Mat gray;
cvtColor(I1, gray, COLOR_BGR2GRAY);
gray.convertTo(gray, CV_64F);
gray -= Ibj;
Mat bw1;
threshold(gray, bw1, 25, 255, THRESH_BINARY);
Mat bwAreaOpenBW;
morphologyEx(bw1, bwAreaOpenBW, MORPH_OPEN, getStructuringElement(MORPH_RECT, Size(3, 3)));
Mat labels, stats, centroids;
int n = connectedComponentsWithStats(bwAreaOpenBW, labels, stats, centroids);
for (int j = 1; j < n; j++)
{
Mat mask = labels == j;
Mat r, c;
findNonZero(mask, r);
reduce(r, r, 1, REDUCE_AVG);
findNonZero(mask, c);
reduce(c, c, 1, REDUCE_AVG);
Mat coeffs = Mat::zeros(2, 1, CV_64F);
fitLine(r, c, coeffs, DIST_L2, 0.01, 0.01);
double b1 = coeffs.at<double>(0, 0);
double b2 = coeffs.at<double>(1, 0);
int minzhi = *std::min_element(c.begin<int>(), c.end<int>());
int maxzhi = *std::max_element(c.begin<int>(), c.end<int>());
double duan1x = b1 + b2 * minzhi;
double duan1y = minzhi;
double duan2x = b1 + b2 * maxzhi;
double duan2y = maxzhi;
// 在图像上绘制直线和端点
line(I1, Point(b1 + b2 * minzhi, minzhi), Point(b1 + b2 * maxzhi, maxzhi), Scalar(0, 0, 255), 2);
circle(I1, Point(duan1x, duan1y), 3, Scalar(0, 255, 0), -1);
circle(I1, Point(duan2x, duan2y), 3, Scalar(0, 255, 0), -1);
}
imshow("I1", I1);
waitKey(0);
}
return 0;
}
```
需要注意的是,这里使用了OpenCV的函数来读取图像、处理图像和绘制结果。由于MATLAB和OpenCV的函数参数和输出格式有所不同,因此需要对代码进行适当修改。
阅读全文