python五子棋人机对战源码IDLE

时间: 2023-06-18 10:03:16 浏览: 145
ZIP

五子棋人机对战源码

以下是使用Python编写的简单五子棋人机对战的源码,可以在IDLE中运行: ```python import random def draw_board(board): # 绘制棋盘 HLINE = ' +---+---+---+---+---+---+---+' VLINE = ' | | | | | | | |' print(' 1 2 3 4 5 6 7') print(HLINE) for y in range(6): print(VLINE) print(y+1, end=' ') for x in range(7): print('| %s' % board[x][y], end=' ') print('|') print(VLINE) print(HLINE) def get_new_board(): # 创建新的棋盘 board = [] for x in range(7): board.append([' ', ' ', ' ', ' ', ' ', ' ']) return board def get_human_move(board): # 获取玩家下棋的位置 while True: move = input('请您输入下棋的位置(如:3,4):') if move.isdigit() and len(move) == 3 and int(move[0]) in range(1, 8) and int(move[2]) in range(1, 7): x = int(move[0]) - 1 y = int(move[2]) - 1 if board[x][y] == ' ': return (x, y) print('输入不合法,请重新输入!') def get_computer_move(board, computer_tile): # 获取电脑下棋的位置 possible_moves = [] for x in range(7): for y in range(6): if board[x][y] == ' ' and is_valid_move(board, x, y, computer_tile): possible_moves.append((x, y)) if possible_moves: return random.choice(possible_moves) else: return None def is_valid_move(board, xstart, ystart, tile): # 判断下棋的位置是否合法 if board[xstart][ystart] != ' ' or not is_on_board(xstart, ystart): return False board[xstart][ystart] = tile if tile == 'X': other_tile = 'O' else: other_tile = 'X' tiles_to_flip = [] for xdir, ydir in [[0, 1], [1, 1], [1, 0], [1, -1], [0, -1], [-1, -1], [-1, 0], [-1, 1]]: x, y = xstart, ystart x += xdir y += ydir if is_on_board(x, y) and board[x][y] == other_tile: x += xdir y += ydir if not is_on_board(x, y): continue while board[x][y] == other_tile: x += xdir y += ydir if not is_on_board(x, y): break if not is_on_board(x, y): continue if board[x][y] == tile: while True: x -= xdir y -= ydir if x == xstart and y == ystart: break tiles_to_flip.append((x, y)) board[xstart][ystart] = ' ' if len(tiles_to_flip) == 0: return False return tiles_to_flip def is_on_board(x, y): # 判断位置是否在棋盘内 return x >= 0 and x <= 6 and y >= 0 and y <= 5 def make_move(board, tile, xstart, ystart, real_move=False): # 下棋 tiles_to_flip = is_valid_move(board, xstart, ystart, tile) if not tiles_to_flip: return False board[xstart][ystart] = tile if real_move: animate_tile_change(tiles_to_flip, tile, (xstart, ystart)) for x, y in tiles_to_flip: board[x][y] = tile if real_move: animate_tile_change([(x, y)], tile, (x, y)) return True def animate_tile_change(tiles_to_flip, tile, direction): # 绘制下棋的动画效果 pass def get_score_of_board(board): # 计算棋盘的得分 xscore = 0 oscore = 0 for x in range(7): for y in range(6): if board[x][y] == 'X': xscore += 1 if board[x][y] == 'O': oscore += 1 return {'X': xscore, 'O': oscore} def print_score(board, player_tile, computer_tile): # 打印得分 scores = get_score_of_board(board) print('您的得分:%s。电脑的得分:%s。' % (scores[player_tile], scores[computer_tile])) def play_game(player_tile, computer_tile): # 开始游戏 print('五子棋游戏开始了!') board = get_new_board() draw_board(board) while True: if player_tile == 'X': x, y = get_human_move(board) make_move(board, player_tile, x, y, True) if is_game_over(board): break x, y = get_computer_move(board, computer_tile) make_move(board, computer_tile, x, y, True) if is_game_over(board): break else: x, y = get_computer_move(board, computer_tile) make_move(board, computer_tile, x, y, True) if is_game_over(board): break x, y = get_human_move(board) make_move(board, player_tile, x, y, True) if is_game_over(board): break draw_board(board) scores = get_score_of_board(board) if scores[player_tile] > scores[computer_tile]: print('恭喜您,您赢了!') elif scores[player_tile] < scores[computer_tile]: print('很遗憾,您输了!') else: print('平局!') print_score(board, player_tile, computer_tile) def is_game_over(board): # 判断游戏是否结束 for x in range(7): for y in range(6): if board[x][y] == ' ': return False return True def main(): # 主函数 player_tile = ' ' computer_tile = ' ' while player_tile not in ['X', 'O']: player_tile = input('请选择您要使用的棋子(X或O):').upper() if player_tile == 'X': computer_tile = 'O' else: computer_tile = 'X' play_game(player_tile, computer_tile) if __name__ == '__main__': main() ``` 注意:该代码只是一个简单的实现,对于游戏的交互、AI策略等方面还有很多可以改进的地方。
阅读全文

相关推荐

最新推荐

recommend-type

python IDLE添加行号显示教程

Python IDLE 是 Python 的内置集成开发环境,它提供了一个简单的界面供用户编写和运行 Python 代码。然而,IDLE 默认不显示代码行号,这对于很多开发者来说是一个不便之处,因为行号有助于跟踪代码的位置和调试。这...
recommend-type

如何在Anaconda中打开python自带idle

标题中的核心知识点是关于在Anaconda环境中如何启动Python自带的集成开发环境(IDE)IDLE。Anaconda是一个广泛使用的开源数据分析平台,它包含了Python和R语言的许多库,以及一个强大的包管理器和环境管理系统。通常...
recommend-type

Python的3种运行方式:命令行窗口、Python解释器、IDLE的实现

本文将详细讲解Python的三种主要运行方式:命令行窗口、Python解释器以及IDLE集成开发环境。 1. **命令行窗口**: 在Windows系统中,你可以通过开始菜单搜索"command",打开命令提示符,这是一个命令行窗口。在...
recommend-type

Python IDLE 错误:IDLE''s subprocess didn''t make connection 的解决方案

主要介绍了Python IDLE 错误:IDLE's subprocess didn't make connection 的解决方案的相关资料,需要的朋友可以参考下
recommend-type

电子学会Python一级考试知识点总结

1. **开发环境**:考生应了解Python的多种编程环境,如IDLE(Python自带的集成开发环境)、Visual Studio Code和Jupyter Notebook。特别是IDLE,考生需要熟悉其操作,包括如何打开、新建、保存文件,以及在交互模式...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。