python读取文件夹下名字为zd的shp文件,并将宗地号字段改名为zd

时间: 2023-04-06 20:04:28 浏览: 33
可以使用Python中的shapefile库来读取shp文件,然后使用pandas库来修改宗地号字段的名称。具体代码如下: ```python import shapefile import pandas as pd # 读取shp文件 sf = shapefile.Reader("path/to/folder/zd.shp") # 获取宗地号字段的位置 fields = sf.fields zd_index = None for i, field in enumerate(fields): if field[0] == "宗地号": zd_index = i - 1 break # 读取记录并修改宗地号字段名称 records = sf.records() fields[zd_index] = ("zd_new", "C") df = pd.DataFrame(records, columns=[field[0] for field in fields]) df.rename(columns={"宗地号": "zd_new"}, inplace=True) # 保存修改后的shp文件 w = shapefile.Writer("path/to/folder/zd_new.shp") w.fields = fields for i, row in df.iterrows(): w.record(*row) w.shape(sf.shape(i)) w.close() ``` 其中,"path/to/folder/zd.shp"是要读取的shp文件的路径,"zd_new"是修改后的宗地号字段的名称,"path/to/folder/zd_new.shp"是保存修改后的shp文件的路径。

相关推荐

在Python中遍历文件夹下的.shp文件,并为每个.shp文件新增两个字段的操作可以通过使用geopandas库和循环遍历实现。 首先,需要安装geopandas库,可以使用以下命令进行安装: python pip install geopandas 然后,下面是用Python遍历文件夹下的.shp文件并新增两个字段的代码示例: python import geopandas as gpd import os folder_path = "文件夹路径" # 文件夹路径 new_field1 = "字段1" # 新增字段1的名称 new_field2 = "字段2" # 新增字段2的名称 # 遍历文件夹下的.shp文件 for file_name in os.listdir(folder_path): if file_name.endswith(".shp"): shp_path = os.path.join(folder_path, file_name) # 读取.shp文件为GeoDataFrame gdf = gpd.read_file(shp_path) # 新增两个字段并赋初值 gdf[new_field1] = None gdf[new_field2] = None # 保存修改后的GeoDataFrame至.shp文件 gdf.to_file(shp_path) 在上述代码中,需要将"文件夹路径"替换为实际的文件夹路径,并将"字段1"和"字段2"替换为需要新增的字段名称。代码会遍历文件夹下的所有.shp文件,读取每个.shp文件为GeoDataFrame,然后为每个GeoDataFrame新增两个字段,并将修改后的GeoDataFrame保存至原文件。 需要注意的是,要确保.shp文件的属性表中不存在与新增字段名称相同的字段,否则会导致错误。如果.shp文件中已存在需要新增的字段,可使用相关方法进行字段重命名或删除原有字段后再新增。

最新推荐

利用Python裁切tiff图像且读取tiff,shp文件的实例

主要介绍了利用Python裁切tiff图像且读取tiff,shp文件的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

对python 读取线的shp文件实例详解

今天小编就为大家分享一篇对python 读取线的shp文件实例详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

语义Web动态搜索引擎:解决语义Web端点和数据集更新困境

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1497语义Web检索与分析引擎Semih Yumusak†KTO Karatay大学,土耳其semih. karatay.edu.trAI 4 BDGmbH,瑞士s. ai4bd.comHalifeKodazSelcukUniversity科尼亚,土耳其hkodaz@selcuk.edu.tr安德烈亚斯·卡米拉里斯荷兰特文特大学utwente.nl计算机科学系a.kamilaris@www.example.com埃利夫·尤萨尔KTO KaratayUniversity科尼亚,土耳其elif. ogrenci.karatay.edu.tr土耳其安卡拉edogdu@cankaya.edu.tr埃尔多安·多杜·坎卡亚大学里扎·埃姆雷·阿拉斯KTO KaratayUniversity科尼亚,土耳其riza.emre.aras@ogrenci.karatay.edu.tr摘要语义Web促进了Web上的通用数据格式和交换协议,以实现系统和机器之间更好的互操作性。 虽然语义Web技术被用来语义注释数据和资源,更容易重用,这些数据源的特设发现仍然是一个悬 而 未 决 的 问 题 。 流 行 的 语 义 Web �

matlabmin()

### 回答1: `min()`函数是MATLAB中的一个内置函数,用于计算矩阵或向量中的最小值。当`min()`函数接收一个向量作为输入时,它返回该向量中的最小值。例如: ``` a = [1, 2, 3, 4, 0]; min_a = min(a); % min_a = 0 ``` 当`min()`函数接收一个矩阵作为输入时,它可以按行或列计算每个元素的最小值。例如: ``` A = [1, 2, 3; 4, 0, 6; 7, 8, 9]; min_A_row = min(A, [], 2); % min_A_row = [1;0;7] min_A_col = min(A, [],

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

数据搜索和分析

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1485表征数据集搜索查询艾米莉亚·卡普尔扎克英国南安普敦大学开放数据研究所emilia. theodi.org珍妮·坦尼森英国伦敦开放数据研究所jeni@theodi.org摘要在Web上生成和发布的数据量正在迅速增加,但在Web上搜索结构化数据仍然存在挑战。在本文中,我们探索数据集搜索分析查询专门为这项工作产生的通过众包-ING实验,并比较它们的搜索日志分析查询的数据门户网站。搜索环境的变化以及我们给人们的任务改变了生成的查询。 我们发现,在我们的实验中发出的查询比数据门户上的数据集的搜索查询要长得多。 它们还包含了七倍以上的地理空间和时间信息的提及,并且更有可能被结构化为问题。这些见解可用于根据数据集搜索的特定信息需求和特征关键词数据集搜索,�

os.listdir()

### 回答1: os.listdir() 是一个 Python 函数,用于列出指定目录中的所有文件和子目录的名称。它需要一个字符串参数,表示要列出其内容的目录的路径。例如,如果您想要列出当前工作目录中的文件和目录,可以使用以下代码: ``` import os dir_path = os.getcwd() # 获取当前工作目录 files = os.listdir(dir_path) # 获取当前工作目录中的所有文件和目录 for file in files: print(file) ``` 此代码将列出当前工作目录中的所有文件和目录的名称。 ### 回答2: os.l

freescale IMX6 开发板原理图

freesacle 的arm cortex-a9的双核 四核管脚兼容CPU开发板原理图。

自适应学习率的矩阵近似协同过滤算法(AdaError)

首页>外文书>人文>心理励志> User Modeling,WWW 2018,2018年4月23日至27日,法741AdaError:一种自适应学习率的矩阵近似协同过滤李东升IBM中国研究院中国上海ldsli@cn.ibm.com上海复旦大学,中国lutun@fudan.edu.cn摘要朝晨IBM中国研究院中国上海cchao@cn.ibm.com李尚科罗拉多大学博尔德分校美国科罗拉多州博尔德li. colorado.edu秦律科罗拉多大学博尔德分校美国科罗拉多州博尔德www.example.comqin.lv @colorado.edu复旦大学上海,中国ninggu@fudan.edu.cnACM参考格式:HansuGuSeagateTechnology美国科罗拉多guhansu@gmail.comStephen M.朱IBM研究院-中国上海,中国schu@cn.ibm.com诸如随机梯度下降的基于梯度的学习方法被广泛用于基于矩阵近似的协同过滤算法中,以基于观察到的用户项目评级来训练推荐模型。一个主要的困难 在现有的基于梯度的学习方法中,确定适当的学习率是一个重要的问题,因为如果�