def step(self, u): #step 函数返回四个值observation、reward、done、info #observation (object):一个与环境相关的对象描述你观察到的环境,如相机的像素信息,机器人的角速度和角加速度,棋盘游戏中的棋盘状态。 #reward (float):先前行为获得的所有回报之和,不同环境的计算方式不一,但目标总是增加自己的总回报。 #done (boolean): 判断是否到了重新设定(reset)环境,大多数任务分为明确定义的episodes,并且完成为True表示episode已终止。 #info (dict):用于调试的诊断信息,有时也用于学习,但正式的评价不允许使用该信息进行学习。 这是一个典型的agent-environment loop 的实现。 th, thdot = self.state # th := theta g = self.g m = self.m l = self.l dt = self.dt u = np.clip(u, -self.max_torque, self.max_torque)[0] self.last_u = u # for rendering costs = angle_normalize(th) ** 2 + 0.1 * thdot**2 + 0.001 * (u**2) newthdot = thdot + (3 * g / (2 * l) * np.sin(th) + 3.0 / (m * l**2) * u) * dt newthdot = np.clip(newthdot, -self.max_speed, self.max_speed) newth = th + newthdot * dt self.state = np.array([newth, newthdot]) self.renderer.render_step() # observation、reward、done、info return self._get_obs(), -costs, False, False, {}
时间: 2024-04-26 12:22:50 浏览: 65
这是一个Pendulum-v0环境的step函数的实现,输入是一个动作u,输出是observation、reward、done、info四个值。函数首先从当前状态self.state中获取theta和theta_dot的值,然后从环境中获取重力g、摆杆质量m、摆杆长度l和离散时间步长dt。函数对输入的动作进行裁剪,并将结果保存在self.last_u中,以进行后续的渲染。接下来,函数计算代价(costs)作为theta的平方加上theta_dot的平方和动作u的平方的加权和。然后,函数计算新的theta_dot和theta值,使用三倍重力除以两倍摆杆长度,再加上动作u除以摆杆质量和摆杆长度的平方的乘积乘以离散时间步长dt,得到新的theta_dot值。函数对新的theta_dot进行裁剪,并将新的theta值计算出来,保存在self.state中。最后,函数进行渲染,并返回observation、-costs、False、False、{}四个值,其中reward为代价的相反数。
相关问题
用pycharm和pytorch写一个基于DDPG算法的无人机降落代码
这是一个比较复杂的项目,需要一些前置知识。以下是一个简单的代码示例,仅供参考,不保证完全正确和可运行,需要根据实际情况进行修改和调整。
首先,我们需要安装PyTorch和OpenAI Gym:
```
pip install torch gym
```
然后,我们定义一个无人机降落环境:
```python
import gym
import numpy as np
class LandingEnv(gym.Env):
def __init__(self):
self.observation_space = gym.spaces.Box(low=0, high=1, shape=(3,))
self.action_space = gym.spaces.Box(low=-1, high=1, shape=(1,))
self.goal = np.array([0.5, 0.5, 0.0])
self.state = np.array([0.0, 0.0, 1.0])
self.time_step = 0
self.max_time_step = 100
def reset(self):
self.state = np.array([0.0, 0.0, 1.0])
self.time_step = 0
return self.state
def step(self, action):
self.time_step += 1
action = np.clip(action, self.action_space.low, self.action_space.high)
noise = np.random.normal(0, 0.1)
next_state = np.clip(self.state + np.array([0.0, 0.0, action[0] + noise]), self.observation_space.low, self.observation_space.high)
reward = -np.sum(np.abs(next_state - self.goal))
done = (self.time_step >= self.max_time_step)
self.state = next_state
return next_state, reward, done, {}
def render(self, mode="human"):
pass
```
在这个环境中,我们需要让无人机在规定时间内降落到指定高度。环境的观测空间是一个三维向量,表示无人机的高度、速度和加速度。动作空间是一个一维向量,表示无人机的油门输入。奖励函数是负的状态与目标之间的欧氏距离。
接下来,我们定义一个DDPG智能体:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Normal
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.fc1 = nn.Linear(state_dim, 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, action_dim)
self.max_action = max_action
def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
x = self.max_action * torch.tanh(self.fc3(x))
return x
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.fc1 = nn.Linear(state_dim + action_dim, 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, 1)
def forward(self, state, action):
x = torch.cat([state, action], 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
class DDPG(object):
def __init__(self, state_dim, action_dim, max_action):
self.actor = Actor(state_dim, action_dim, max_action).cuda()
self.actor_target = Actor(state_dim, action_dim, max_action).cuda()
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=1e-3)
self.critic = Critic(state_dim, action_dim).cuda()
self.critic_target = Critic(state_dim, action_dim).cuda()
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=1e-3)
self.max_action = max_action
def select_action(self, state):
state = torch.FloatTensor(state.reshape(1, -1)).cuda()
action = self.actor(state).cpu().data.numpy().flatten()
return action
def train(self, replay_buffer, batch_size=256, discount=0.99, tau=0.001):
state, action, next_state, reward, done = replay_buffer.sample(batch_size)
state = torch.FloatTensor(state).cuda()
action = torch.FloatTensor(action).cuda()
next_state = torch.FloatTensor(next_state).cuda()
reward = torch.FloatTensor(reward).cuda()
done = torch.FloatTensor(done).cuda()
target_Q = self.critic_target(next_state, self.actor_target(next_state))
target_Q = reward + ((1 - done) * discount * target_Q).detach()
current_Q = self.critic(state, action)
critic_loss = F.mse_loss(current_Q, target_Q)
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
actor_loss = -self.critic(state, self.actor(state)).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
```
在这个DDPG智能体中,我们使用了一个Actor网络和一个Critic网络。Actor网络将状态映射到动作,Critic网络将状态和动作映射到Q值。在训练时,我们使用了一个经验回放缓冲区,每次从中随机采样一批样本进行训练。我们还使用了一些技巧,如目标网络和软更新,以提高训练效果。
最后,我们可以将环境和智能体组合起来进行训练:
```python
env = LandingEnv()
agent = DDPG(state_dim=3, action_dim=1, max_action=1.0)
replay_buffer = ReplayBuffer()
state = env.reset()
while True:
action = agent.select_action(state)
next_state, reward, done, _ = env.step(action)
replay_buffer.add(state, action, next_state, reward, done)
agent.train(replay_buffer)
state = next_state
if done:
state = env.reset()
```
在训练结束后,我们可以使用训练好的智能体进行测试:
```python
state = env.reset()
while True:
action = agent.select_action(state)
next_state, reward, done, _ = env.step(action)
state = next_state
if done:
state = env.reset()
```
这就是一个简单的基于DDPG算法的无人机降落代码。需要注意的是,这只是一个示例代码,实际的项目中还需要进行很多修改和调整。
用python写一个DDPG算法案例并且给每条语句添加注释
好的,以下是一个用Python实现DDPG算法的案例,并添加了注释以方便理解:
```python
# 导入必要的库
import tensorflow as tf
import numpy as np
import gym
# 定义Actor和Critic网络结构
class Actor(object):
def __init__(self, sess, state_dim, action_dim, action_bound):
self.sess = sess
self.state_dim = state_dim
self.action_dim = action_dim
self.action_bound = action_bound
# 创建Actor网络
self.inputs, self.out = self.create_actor_network()
# 创建Actor目标网络
self.target_inputs, self.target_out = self.create_actor_network()
# 定义Actor网络参数更新操作
self.actor_params = tf.trainable_variables()
# 定义Actor目标网络更新操作
self.target_actor_params = tf.trainable_variables()[len(self.actor_params):]
# 创建Actor梯度操作
self.action_gradient = tf.placeholder(tf.float32, [None, self.action_dim])
self.actor_gradients = tf.gradients(self.out, self.actor_params, -self.action_gradient)
# 定义Actor参数更新操作
self.optimizer = tf.train.AdamOptimizer(0.0001).apply_gradients(zip(self.actor_gradients, self.actor_params))
# 创建Actor网络
def create_actor_network(self):
inputs = tf.placeholder(tf.float32, [None, self.state_dim])
w1 = tf.Variable(tf.random_normal([self.state_dim, 64]))
b1 = tf.Variable(tf.random_normal([64]))
l1 = tf.nn.relu(tf.matmul(inputs, w1) + b1)
w2 = tf.Variable(tf.random_normal([64, self.action_dim]))
b2 = tf.Variable(tf.random_normal([self.action_dim]))
out = tf.nn.tanh(tf.matmul(l1, w2) + b2)
scaled_out = tf.multiply(out, self.action_bound)
return inputs, scaled_out
# 训练Actor网络
def train(self, inputs, a_gradient):
self.sess.run(self.optimizer, feed_dict={
self.inputs: inputs,
self.action_gradient: a_gradient
})
# 更新Actor目标网络
def update_target_network(self):
self.sess.run([self.target_actor_params[i].assign(tf.multiply(self.actor_params[i], 0.1) +
tf.multiply(self.target_actor_params[i], 0.9))
for i in range(len(self.target_actor_params))])
# 预测Actor输出结果
def predict(self, inputs):
return self.sess.run(self.out, feed_dict={
self.inputs: inputs
})
# 预测Actor目标输出结果
def predict_target(self, inputs):
return self.sess.run(self.target_out, feed_dict={
self.target_inputs: inputs
})
class Critic(object):
def __init__(self, sess, state_dim, action_dim):
self.sess = sess
self.state_dim = state_dim
self.action_dim = action_dim
# 创建Critic网络
self.inputs, self.action, self.out = self.create_critic_network()
# 创建Critic目标网络
self.target_inputs, self.target_action, self.target_out = self.create_critic_network()
# 定义Critic网络参数更新操作
self.critic_params = tf.trainable_variables()[len(self.action_dim):]
# 定义Critic目标网络更新操作
self.target_critic_params = tf.trainable_variables()[(len(self.action_dim) + len(self.critic_params)):]
# 创建Critic目标Q值
self.predicted_q_value = tf.placeholder(tf.float32, [None, 1])
# 定义Critic网络损失函数
self.loss = tf.reduce_mean(tf.square(self.predicted_q_value - self.out))
# 定义Critic网络更新操作
self.optimizer = tf.train.AdamOptimizer(0.001).minimize(self.loss)
# 定义Critic网络梯度操作
self.action_grads = tf.gradients(self.out, self.action)
# 创建Critic网络
def create_critic_network(self):
inputs = tf.placeholder(tf.float32, [None, self.state_dim])
action = tf.placeholder(tf.float32, [None, self.action_dim])
w1 = tf.Variable(tf.random_normal([self.state_dim, 64]))
b1 = tf.Variable(tf.random_normal([64]))
l1 = tf.nn.relu(tf.matmul(inputs, w1) + b1)
w2 = tf.Variable(tf.random_normal([64, self.action_dim]))
a2 = tf.Variable(tf.random_normal([self.action_dim]))
l2 = tf.matmul(l1, w2) + tf.matmul(action, a2)
w3 = tf.Variable(tf.random_normal([self.action_dim, 1]))
b3 = tf.Variable(tf.random_normal([1]))
out = tf.matmul(l2, w3) + b3
return inputs, action, out
# 训练Critic网络
def train(self, inputs, action, predicted_q_value):
return self.sess.run([self.out, self.optimizer], feed_dict={
self.inputs: inputs,
self.action: action,
self.predicted_q_value: predicted_q_value
})
# 更新Critic目标网络
def update_target_network(self):
self.sess.run([self.target_critic_params[i].assign(tf.multiply(self.critic_params[i], 0.1) +
tf.multiply(self.target_critic_params[i], 0.9))
for i in range(len(self.target_critic_params))])
# 预测Critic输出结果
def predict(self, inputs, action):
return self.sess.run(self.out, feed_dict={
self.inputs: inputs,
self.action: action
})
# 计算Critic网络梯度
def action_gradients(self, inputs, actions):
return self.sess.run(self.action_grads, feed_dict={
self.inputs: inputs,
self.action: actions
})
# 定义DDPG算法
class DDPG(object):
def __init__(self, state_dim, action_dim, action_bound):
# 初始化参数
self.state_dim = state_dim
self.action_dim = action_dim
self.action_bound = action_bound
# 创建Actor和Critic网络
self.sess = tf.Session()
self.actor = Actor(self.sess, self.state_dim, self.action_dim, self.action_bound)
self.critic = Critic(self.sess, self.state_dim, self.action_dim)
# 初始化Actor和Critic目标网络
self.actor.update_target_network()
self.critic.update_target_network()
# 初始化replay buffer
self.buffer_size = 1000000
self.buffer = ReplayBuffer(self.buffer_size)
# 定义DDPG参数
self.batch_size = 64
self.gamma = 0.99
self.tau = 0.001
# 定义添加replay buffer操作
def add_buffer(self, state, action, reward, next_state, done):
self.buffer.add(state, action, reward, next_state, done)
# 定义选择动作操作
def choose_action(self, state):
return self.actor.predict(np.reshape(state, (1, self.state_dim))) + \
np.random.normal(0, self.action_bound / 10, size=self.action_dim)
# 定义训练操作
def train(self):
# 从replay buffer中随机抽取样本
batch_state, batch_action, batch_reward, batch_next_state, batch_done = self.buffer.sample(self.batch_size)
# 计算目标Q值
target_action = self.actor.predict_target(batch_next_state)
target_q_value = self.critic.predict_target(batch_next_state, target_action)
y_i = []
for k in range(self.batch_size):
if batch_done[k]:
y_i.append(batch_reward[k])
else:
y_i.append(batch_reward[k] + self.gamma * target_q_value[k])
# 训练Critic网络
predicted_q_value, _ = self.critic.train(batch_state, batch_action, np.reshape(y_i, (self.batch_size, 1)))
# 计算Actor梯度
action_out = self.actor.predict(batch_state)
grads = self.critic.action_gradients(batch_state, action_out)
# 训练Actor网络
self.actor.train(batch_state, grads[0])
# 更新Actor和Critic目标网络
self.actor.update_target_network()
self.critic.update_target_network()
# 定义保存模型操作
def save_model(self):
saver = tf.train.Saver()
saver.save(self.sess, "./model/model.ckpt")
# 定义加载模型操作
def load_model(self):
saver = tf.train.Saver()
saver.restore(self.sess, "./model/model.ckpt")
# 定义replay buffer
class ReplayBuffer(object):
def __init__(self, buffer_size):
self.buffer_size = buffer_size
self.buffer = []
# 添加样本到replay buffer
def add(self, state, action, reward, next_state, done):
if len(self.buffer) + 1 >= self.buffer_size:
self.buffer[0:(1 + len(self.buffer)) - self.buffer_size] = []
self.buffer.append((state, action, reward, next_state, done))
# 随机抽取一个batch的样本
def sample(self, batch_size):
batch = []
for i in range(batch_size):
batch.append(self.buffer[np.random.randint(0, len(self.buffer))])
batch_state = np.array([_[0] for _ in batch])
batch_action = np.array([_[1] for _ in batch])
batch_reward = np.array([_[2] for _ in batch])
batch_next_state = np.array([_[3] for _ in batch])
batch_done = np.array([_[4] for _ in batch])
return batch_state, batch_action, batch_reward, batch_next_state, batch_done
# 运行DDPG算法
def run_ddpg():
# 初始化gym环境
env = gym.make("Pendulum-v0")
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
action_bound = env.action_space.high[0]
# 创建DDPG算法
ddpg = DDPG(state_dim, action_dim, action_bound)
# 定义训练参数
episodes = 5000
steps = 200
for i in range(episodes):
state = env.reset()
total_reward = 0
for j in range(steps):
# 选择动作
action = ddpg.choose_action(state)
# 执行动作
next_state, reward, done, info = env.step(action)
# 添加样本到replay buffer
ddpg.add_buffer(state, action, reward, next_state, done)
# 如果replay buffer中样本数量大于batch size,则开始训练
if len(ddpg.buffer.buffer) > ddpg.batch_size:
ddpg.train()
# 更新状态和奖励
state = next_state
total_reward += reward
# 如果游戏结束,则输出结果
if done:
print("Episode:", i, "Reward:", total_reward)
break
# 保存模型
ddpg.save_model()
```
以上就是一个用Python实现DDPG算法的案例,并添加了注释以方便理解。
阅读全文