TCN实现一维单特征时间序列信号端到端分类代码,有100个样本,每个样本数据是一个2000长的数据,每个数据只有一个数,希望输出2000个0-6七分类的标签,每类之间的变化位置不明确需要模型去学习,pytorch实现
时间: 2024-03-21 19:42:59 浏览: 144
以下是一个简单的TCN模型实现,用于端到端分类时间序列信号:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
class TCN(nn.Module):
def __init__(self, input_size, output_size, num_channels, kernel_size, dropout):
super(TCN, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.num_channels = num_channels
self.kernel_size = kernel_size
self.dropout = dropout
self.tcn = nn.Sequential(
nn.Conv1d(input_size, num_channels, kernel_size, stride=1, padding=(kernel_size-1)),
nn.BatchNorm1d(num_channels),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size, stride=1, padding=(kernel_size-1)),
nn.BatchNorm1d(num_channels),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size, stride=1, padding=(kernel_size-1)),
nn.BatchNorm1d(num_channels),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size, stride=1, padding=(kernel_size-1)),
nn.BatchNorm1d(num_channels),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size, stride=1, padding=(kernel_size-1)),
nn.BatchNorm1d(num_channels),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv1d(num_channels, output_size, kernel_size, stride=1, padding=(kernel_size-1))
)
def forward(self, x):
y = self.tcn(x)
return y.permute(0, 2, 1) # reshape output to (batch_size, seq_length, output_size)
class MyDataset(Dataset):
def __init__(self, data, targets):
self.data = data
self.targets = targets
def __len__(self):
return len(self.data)
def __getitem__(self, index):
x = self.data[index]
y = self.targets[index]
return torch.FloatTensor(x), torch.LongTensor(y)
def train(model, device, train_loader, optimizer, criterion):
model.train()
train_loss = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
train_loss += loss.item()
loss.backward()
optimizer.step()
train_loss /= len(train_loader)
return train_loss
def test(model, device, test_loader, criterion):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=2, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader)
accuracy = correct / (len(test_loader.dataset) * target.shape[1])
return test_loss, accuracy
if __name__ == '__main__':
# Create some fake data
data = torch.randn(100, 1, 2000)
targets = torch.randint(7, size=(100, 2000))
# Split data into train and test sets
train_data = MyDataset(data[:80], targets[:80])
test_data = MyDataset(data[80:], targets[80:])
# Create data loaders
train_loader = DataLoader(train_data, batch_size=16, shuffle=True)
test_loader = DataLoader(test_data, batch_size=16, shuffle=True)
# Define hyperparameters
input_size = 1
output_size = 7
num_channels = 64
kernel_size = 3
dropout = 0.2
learning_rate = 0.001
num_epochs = 10
# Define the model and optimizer
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = TCN(input_size, output_size, num_channels, kernel_size, dropout).to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()
# Train the model
for epoch in range(num_epochs):
train_loss = train(model, device, train_loader, optimizer, criterion)
test_loss, accuracy = test(model, device, test_loader, criterion)
print(f'Epoch {epoch}: Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}, Accuracy: {accuracy:.4f}')
```
在这个例子中,我们创建了一个虚假的数据集,其中包含100个样本,每个样本包含一个具有2000个时间步长的单特征时间序列信号。我们将使用TCN模型来对信号进行端到端分类,将每个时间步长的输出映射到七个可能的类别。我们将使用PyTorch的DataLoader来将数据分批处理,以便模型可以更有效地训练。我们还定义了一个train函数和一个test函数,这些函数分别用于在训练和测试数据上运行模型,并计算损失和准确性。最后,我们将训练模型,每个epoch都输出训练损失、测试损失和准确性。
阅读全文