fig = plt.figure(figsize=(fig_width, fig_length),frameon=True) ax = fig.subfigures(3,1,width_ratios=[0.2], height_ratios= [0.8,0.8,0.8]) ####################################################################### axs = ax[0].subplots(1, 2, gridspec_kw={'width_ratios': [15, 1]}) axs[1].axis('off') #plt.subplots_adjust(left=0.1,right=1) extent=[0,30,-8,8] im1=axs[0].imshow(eyave,extent=extent,cmap='RdBu_r',vmin=-6e12,vmax=6e12) im2=axs[0].imshow(ele,extent=extent,cmap=my_cmapEy,vmin=0,vmax=10) axs[0].set_yticks([-8,-4,0,4,8]) #色条位置 imcb1=ax[0].add_axes([0.32, 0.12,0.6,0.75]) imcb1.axis('off') #imcb2=fig.add_axes([0.47, 0.15,0.5,0.7]) #imcb2.axis('off') #cb2=fig.colorbar(im2,ax=imcb2,ticks=[0,5,10,15],shrink=1,aspect=16) cb1=fig.colorbar(im1,ax=imcb1,ticks=[-6e12,-3e12,0,3e12,6e12],shrink=0.88,aspect=14) cb1.set_ticklabels(['-6', '-3', '0','3','6']) #axs[0].annotate('×$10^{12}$', xy=(3, 0), xytext=(30,8.5)) axs[0].annotate('×$10^{12}$', xy=(3, 0), xytext=(30,8.5)) axs[0].annotate('with $B_x$', xy=(3, 0), xytext=(24,6)) axs[0].annotate('w/o $B_x$', xy=(3, 0), xytext=(24,-6.5)) axs[0].annotate('y (μm)', xy=(3, 0), xytext=(-4,-2),rotation=90) #axs[0].annotate('x (μm)', xy=(3, 0), xytext=(13,-11)) fig.text(0,0,"x (μm)", fontsize=80) plt.annotate('x (μm)', xy=(3, 0), xytext=(0.5,0.5))#(13,-11.3))所加标签没有显示

时间: 2023-08-30 12:04:10 浏览: 85
PDF

matplotilb中fig,ax = plt.subplots()的使用

在您的代码中,您使用了`fig.text()`和`plt.annotate()`两种方法添加了x轴标签。但是,它们都没有显示在图中。 可能的原因是,您的x轴标签被其他元素遮挡了。您可以尝试使用`zorder`参数来设置元素的绘制顺序,以确保标签在最上层绘制。例如,将`fig.text()`和`plt.annotate()`的`zorder`参数设置为更高的值,如下所示: ``` fig.text(0.5, 0, 'x (μm)', ha='center', fontsize=14, zorder=10) plt.annotate('x (μm)', xy=(3, 0), xytext=(0.5, 0.5), ha='center', va='center', fontsize=14, zorder=10) ``` 此外,您还需要将`frameon`参数设置为`False`,以避免图形边框遮挡标签。完整的代码如下: ``` fig = plt.figure(figsize=(fig_width, fig_length), frameon=False) ax = fig.subfigures(3,1,width_ratios=[0.2], height_ratios= [0.8,0.8,0.8]) axs = ax[0].subplots(1, 2, gridspec_kw={'width_ratios': [15, 1]}) axs[1].axis('off') extent=[0,30,-8,8] im1=axs[0].imshow(eyave,extent=extent,cmap='RdBu_r',vmin=-6e12,vmax=6e12) im2=axs[0].imshow(ele,extent=extent,cmap=my_cmapEy,vmin=0,vmax=10) axs[0].set_yticks([-8,-4,0,4,8]) imcb1=ax[0].add_axes([0.32, 0.12,0.6,0.75]) imcb1.axis('off') cb1=fig.colorbar(im1,ax=imcb1,ticks=[-6e12,-3e12,0,3e12,6e12],shrink=0.88,aspect=14) cb1.set_ticklabels(['-6', '-3', '0','3','6']) axs[0].annotate('×$10^{12}$', xy=(3, 0), xytext=(30,8.5)) axs[0].annotate('with $B_x$', xy=(3, 0), xytext=(24,6)) axs[0].annotate('w/o $B_x$', xy=(3, 0), xytext=(24,-6.5)) axs[0].annotate('y (μm)', xy=(3, 0), xytext=(-4,-2),rotation=90) fig.text(0.5, 0, 'x (μm)', ha='center', fontsize=14, zorder=10) plt.annotate('x (μm)', xy=(3, 0), xytext=(0.5, 0.5), ha='center', va='center', fontsize=14, zorder=10) plt.show() ``` 请注意,`fig.text()`中的`ha`参数是`center`,以使标签在x轴中心对齐,而`plt.annotate()`中的`ha`和`va`参数均为`center`,以使标签在指定的坐标处居中对齐。如果您仍然无法看到x轴标签,请尝试调整`zorder`参数的值。
阅读全文

相关推荐

import numpy as np import matplotlib.pyplot as plt import math def count(lis): lis = np.array(lis) key = np.unique(lis) x = [] y = [] for k in key: mask = (lis == k) list_new = lis[mask] v = list_new.size x.append(k) y.append(v) return x, y mu = [14, 23, 22] sigma = [2, 3, 4] tips = ['design', 'build', 'test'] figureIndex = 0 fig = plt.figure(figureIndex, figsize=(10, 8)) color = ['r', 'g', 'b'] ax = fig.add_subplot(111) for i in range(3): x = np.linspace(mu[i] - 3*sigma[i], mu[i] + 3*sigma[i], 100) y_sig = np.exp(-(x - mu[i])**2/(2*sigma[i]**2))/(math.sqrt(2*math.pi)) ax.plot = (x, y_sig, color[i] + '-') ax.legend(loc='best', frameon=False) ax.set_xlabel('# of days') ax.set_ylabel('probability') plt.show() plt.grid(True) size = 100000 samples = [np.random.normal(mu[i], sigma[i], size) for i in range(3)] data = np.zeros(len(samples[1])) for i in range(len(samples[1])): for j in range(3): data[i] += samples[j][i] data[i] = int(data[i]) a, b = count(data) pdf = [x/size for x in b] cdf = np.zeros(len(a)) for i in range(len(a)): if i > 0: cdf[i] += cdf[i - 1] cdf = cdf/size figureIndex += 1 fig = plt.figure(figureIndex, figsize=(10, 8)) ax = fig.add_subplot(211) ax.bar(a, height=pdf, color='blue', edgecolor='white', label='MC PDF') ax.plot(a, pdf) ax.legend(loc='best', frameon=False) ax.set_xlabel('# of days for project') ax.set_ylabel('probability') ax.set_title('Monte Carlo Simulation') ax = fig.add_subplot(212) ax.plot(a, cdf) ax.legend(loc='best', frameon=False) ax.set_xlabel('# of days for project') ax.set_ylabel('probability') ax.grid(True) plt.show()修改一下代码

帮我优化一下代码 import matplotlib.pyplot as plt from matplotlib.offsetbox import OffsetImage, AnnotationBbox import pandas as pd import tkinter as tk from tkinter import filedialog import csv import numpy as np filepath = filedialog.askopenfilename() readData = pd.read_csv(filepath, encoding = 'gb2312') # 读取csv数据 print(readData) xdata = readData.iloc[:, 2].tolist() # 获取dataFrame中的第3列,并将此转换为list ydata = readData.iloc[:, 3].tolist() # 获取dataFrame中的第4列,并将此转换为list Color_map = { '0x0': 'r', '0x10': 'b', '0x20': 'pink', '0x30': 'm', '0x40': 'm', '0x50': 'm', '0x60': 'g', '0x70': 'orange', '0x80': 'orange', '0x90': 'm', '0xa0': 'b', '0xb0': 'g', '0xc0': 'g', '0xd0': 'orange', '0xe0': 'orange', '0xf0': 'orange', } plt.ion() fig = plt.figure(num = "蓝牙钥匙连接状态", figsize= (10.8,10.8),frameon= True) gs = fig.add_gridspec(1, 1) ax = fig.add_subplot(gs[0, 0]) colors = readData.iloc[:, 1].map(Color_map) plt.title("Connecting Status For Bluetooth Key") #plt.rcParams['figure.figsize']=(15, 15) ax.axis('equal') a,b = (0.,0.) r = [5,10] for r1 in r: theta = np.arange(0,r1*np.pi,0.05) ax.plot(a+r1*np.cos(theta),b+r1*np.sin(theta),linestyle='-.',c = 'darkgrey') ax.spines['bottom'].set_position(('data', 0)) ax.spines['left'].set_position(('data', 0)) ax.spines['right'].set_position(('data', 0)) ax.spines['top'].set_position(('data', 0)) arr_img = plt.imread('D:\\2022\\测试工作\\蓝牙钥匙测试\\定位\\室内定位(v3.6.21).rar-1656500746516.室内定位(v3.6.21)\\车型图2.png') imagebox = OffsetImage(arr_img, zoom=0.3) ab = AnnotationBbox(imagebox, [0, 0],xybox=(0, 0),pad=0) ax.add_artist(ab) ticks = np.arange(-10,10,2) plt.xticks(ticks) plt.yticks(ticks) #plt.figure(figsize=(15,15)) plt.scatter(xdata, ydata, s=150, edgecolors = None, linewidths=0, alpha=0.3,c = colors) # 画散点图,*:r表示点用*表示,颜色为红色 plt.legend() plt.ioff() plt.show() # 画图

最新推荐

recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

【中国银行-2024研报】美国大选结果对我国芯片产业发展的影响和应对建议.pdf

行业研究报告、行业调查报告、研报
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001