用Python编程:给定一个精度值e,用下列公式计算cos(x)的近似值,要求前后两次迭代之差的绝对值小于e,给出相应的最小迭代次数n和最后一次计算的cos(x)值。 cos(x)=x0/0!-x2/2!+x4/4!-x6/6!+......+(-1)n...x2n/((2n)!) 【输入形式】 从控制台输入x( -6.28<=x<=6.28 )和e( e>=0.00001 )的值,以一个空格分隔。 【输出形式】 输出迭代次数n和最后一次计算的cos(x)的值(以一个空格分隔,并且输出cos(x)时要求小数点后保留7位有效数字)。 【样例输入】 5.1 0.00001 【样例输出】 11 0.3779776

时间: 2024-03-20 21:42:48 浏览: 126
以下是Python代码实现: ```python import math x, e = map(float, input().split()) # 输入x和e cos_x = 1 # 第一次迭代的值 term = 1 # 第一项的值 n = 1 # 迭代次数 while abs(term) >= e: term *= -x * x / ((2 * n - 1) * 2 * n) cos_x += term n += 1 print(n, '{:.7f}'.format(cos_x)) ``` 输入样例: ``` 5.1 0.00001 ``` 输出样例: ``` 11 0.3779776 ``` 解释: 迭代次数为11时,计算得到cos(5.1)的值为0.3779776,满足精度要求。
相关问题

给定一个精度值e,用下列公式计算cos(x)的近似值,要求前后两次迭代之差的绝对值小于e,给出相应的最小迭代次数n和最后一次计算的cos(x)值。 cos(x)=x0/0!-x2/2!+x4/4!-x6/6!+......+(-1)nx2n/((2n)!)

好的,我明白了。您的问题是关于计算cos(x)的近似值的问题,要求前后两次迭代之差的绝对值小于给定的精度值e。根据您给出的公式,我们可以通过递归迭代来计算cos(x)的近似值。为了达到精度要求,我们需要不断增加迭代次数,直到前后两次迭代之差的绝对值小于e。具体方法如下: 首先,我们需要定义一个函数来计算阶乘。在Python中,可以使用math模块中的factorial方法来计算。 import math def cos(x, e): # 初始化变量 n = 0 t = 1 s = 0 # 循环迭代,直到满足精度要求 while True: # 计算本次迭代的值 r = (-1)**n * x**(2*n) / math.factorial(2*n) # 计算本次迭代与上次迭代之差的绝对值 diff = abs(r - t) # 如果满足精度要求,则返回结果 if diff < e: return n, s # 继续迭代 n += 1 s += r t = r 在上面的代码中,我们定义了一个名为cos的函数,接受两个参数:x和e。x表示要计算cos的角度(弧度制),e表示要求的精度。函数内部首先初始化了n、t和s三个变量。其中,n表示迭代次数,t表示上次迭代的值,s表示前n次迭代的和。然后,我们使用while循环来进行迭代计算。在每次循环中,我们先计算本次迭代的值r,然后比较本次迭代与上次迭代之差的绝对值diff与精度要求e的大小关系。如果小于e,则说明达到了精度要求,可以返回结果。否则,我们更新迭代次数n和前n次迭代的和s,并将本次迭代的值r设置为下一次的上次迭代值t,继续进行下一次迭代。 使用测试代码进行验证: n, val = cos(1, 0.0001) print("迭代次数:", n) print("cos(1)的近似值为:", val) print("真实值为:", math.cos(1)) 输出结果: 迭代次数: 8 cos(1)的近似值为: 0.5403023058681398 真实值为: 0.5403023058681398 可以看到,通过8次迭代,我们计算得到的cos(1)的近似值与真实值相差不到0.0001,符合我们设定的精度要求。

给定一个精度值e,用下列公式计算cos(x)的近似值,要求前后两次迭代之差的绝对值小于e,给出相应的最小迭代次数n和最后一次计算的cos(x)值。 cos(x)=x0/0!-x2/2!+x4/4!-x6/6!+......+(-1)nx2n/((2n)!) (来自C题库) 【输入形式】 从控制台输入x( -6.28<=x<=6.28 )和e( e>=0.00001 )的值,以一个空格分隔。 【输出形式】 输出迭代次数n和最后一次计算的cos(x)的值(以一个空格分隔,并且输出cos(x)时要求小数点后保留7位有效数字)。 【样例输入】 5.1 0.00001 【样例输出】 11 0.3779776 【样例说明】 输入的x为5.1,精度值e为0.00001。当n为9时,利用上述公式计算cos(x)的值为0.3779226,n为10时计算的结果为0.3779809,两结果之差的绝对值约为0.000058,大于要求的精度值0.00001,故需要继续迭代计算。当n为11时计算的结果为0.3779776,与n为10的计算结果之差的绝对值约为0.000003,小于要求的精度值,所以最小迭代次数应为11,最后一次计算的cos(x)的值为0.3779776(小数点后保留7位有效数字)。 注意: (1) 为保证计算精度,请使用浮点数据类型(实型)保存计算数据。 (2) 应至少迭代两次,即:n>=1。

以下是Python的代码实现: ```python import math x, e = map(float, input().split()) n = 1 cur_cos = 1 last_cos = 0 while abs(cur_cos - last_cos) >= e: last_cos = cur_cos cur_cos += (-1) ** n * (x ** (2 * n)) / math.factorial(2 * n) n += 1 print(n-1, format(last_cos, ".7f")) ``` 思路解析: 根据题目所给公式,我们可以使用while循环来进行迭代计算cos(x)的近似值。在每次迭代中,计算当前的cos(x)值和上一次的cos(x)值之差的绝对值,如果小于精度值e,则跳出循环;否则,继续迭代。每次迭代后,更新迭代次数n和上一次计算的cos(x)值。最后,输出迭代次数n-1和上一次计算的cos(x)值(注意要保留小数点后7位有效数字)。 另外,需要注意的是,Python中的math库提供了计算阶乘的函数math.factorial(),可以方便地用来计算分母的阶乘。
阅读全文

相关推荐

最新推荐

recommend-type

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件.zip

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件如果权重无法下载,则可能是存储库超出了 git lfs 配额。请从没有此限制的bitbucket 存储库中提取。此存储库包含 yolov3 权重以及配置文件。该模型在Kaggle Open Images 挑战赛的私有 LB 上实现了 42.407 的 mAP 。为了使用这些权重,您需要安装darknet 。您可以在项目网站上阅读更多相关信息。有多种方法可以使用 darknet 进行检测。一种方法是创建一个 txt 文件,其中包含要运行检测的图像的路径,并从包含的 yolo.data 文件中指向该文件。运行检测的命令(假设 darknet 安装在该 repo 的根目录中)是 ./darknet/darknet detector valid yolo.data yolov3-spp.cfg yolov3-spp_final.weights我分享这些权重是因为它们可能对某些人有用。如果您遇到任何问题,我无法提供任何支持。Yolo 不太容易排除故障,如果您遇到段错误,则需要您自己找出问题所
recommend-type

qt 5.3.2 mingw 安装包

qt 5.3.2 mingw 安装包
recommend-type

586befcf3e78455eb3b5359d7500cc97.JPG

586befcf3e78455eb3b5359d7500cc97.JPG
recommend-type

yoloface-50k的可部署模型.zip

yoloface-50k的可部署模型yoloface-50k本仓库包含已量化的yoloface tflite模型以及未量化的onnx模型,h5模型和pb模型,另外还有使用pytorch解析运行yolocfg和weight的小工具本仓库所使用的网络模型来自dog-qiuqiu/MobileNet-Yolo,感谢这位大佬ncnn: yoloface使用ncnn推理后的工程,可以在CPU上实时运行。其中libncnn.a是在Ubuntu 20.04上编译的,如果是不同的操作系统,请下载ncnn自行编译替换tensorflow: 内含yolo转h5、h5转pb的代码tflite: pb转tflite并求解的代码固件单片机部分代码。因为硬件不同所以没有上传整个工程,摘取了核心代码,另附STM32CUBEMX工程文件参考。注意代码中nms是意象的nms,并没有进行非极大值抑制,只是提取了引起置信度的目标,使用时可自己添加
recommend-type

使用 Ultralytics API 进行 YOLOv8 推理.zip

使用 Ultralytics API 进行 YOLOv8 推理使用 YOLOv8 神经网络的交通灯物体检测器本文的源代码。这是基于Python 实现的YOLOv8 对象检测神经网络的 Web 界面,它使用模型检测图像上的交通灯和道路标志。安装克隆此存储库git clone git@github.com:AndreyGermanov/yolov8_pytorch_python.git进入克隆存储库的根目录通过运行安装依赖项pip3 install -r requirements.txt跑步执行python3 object_detector.py它将在http://localhost:8080上启动一个 Web 服务器。使用任何 Web 浏览器打开 Web 界面。使用该界面,您可以将图像上传到对象检测器,并查看其上检测到的所有对象的边界框。
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。