X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size = 0.3),test_size = 0.3是什么意思?怎么设置才好
时间: 2023-10-30 07:41:46 浏览: 83
这行代码使用了 Scikit-learn 库中的 train_test_split 函数,用于将数据集拆分成训练集和验证集。其中,test_size = 0.3 表示将数据集中 30% 的数据划分为验证集,而剩下的 70% 数据作为训练集。
test_size 参数的设置需要根据具体情况来决定。一般来说,如果数据集比较大,可以适当减小验证集的比例,例如 test_size = 0.2 或 test_size = 0.1。而如果数据集比较小,则需要增加验证集的比例,以充分利用数据集来验证模型的性能,例如 test_size = 0.4 或 test_size = 0.5。此外,还需要考虑到数据集中不同类别的分布情况,以保证训练集和验证集中的类别分布大致相同。
相关问题
def split_data(): test_size = float(entry.get()) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=0) return X_train, X_test, y_train, y_test X_train, X_test, y_train, y_test = split_data() # 在函数外部调用split_data函数并保存返回值到全局变量中报错could not convert string to float:
这个错误通常是因为`entry.get()`返回的字符串不能被转换为浮点数。你可以检查一下`entry.get()`返回的具体内容是否为一个有效的浮点数,例如:
```
test_size_str = entry.get()
print(test_size_str)
test_size = float(test_size_str)
```
如果`entry.get()`返回的不是一个浮点数的字符串,你需要确保用户输入的是一个有效的浮点数,或者你可以添加一些异常处理代码来处理这种情况,例如:
```
try:
test_size = float(entry.get())
except ValueError:
print("Invalid input, please enter a valid float number.")
```
if use_KFold: train_data_all = train_data + dev_data + test_data random.shuffle(train_data) K_on = 0 # 记录当前交叉验证的次数 kf = KFold(n_splits=args.crossVali_K, shuffle=True, random_state=520).split(train_data_all) for i, (train_idx, test_idx) in enumerate(kf): K_on += 1 X_train_split, X_test = [train_data_all[i] for i in train_idx], [train_data_all[i] for i in test_idx] random.shuffle(X_train_split) length = len(X_train_split) X_train = X_train_split[0: int(length * 0.8)] X_valid = X_train_split
根据提供的代码片段,这段代码是用于进行交叉验证的循环。下面是对每行代码的解释:
1. `train_data_all = train_data + dev_data + test_data`: 将训练数据集、开发数据集和测试数据集合并为一个整体数据集 `train_data_all`。
2. `random.shuffle(train_data)`: 随机打乱训练数据集 `train_data` 的顺序。
3. `K_on = 0`: 初始化一个变量 `K_on`,用于记录当前进行的交叉验证次数。
4. `kf = KFold(n_splits=args.crossVali_K, shuffle=True, random_state=520).split(train_data_all)`: 使用 `KFold` 函数创建一个交叉验证器,将整体数据集 `train_data_all` 划分成 `args.crossVali_K` 个折叠,并通过设置 `shuffle=True` 和 `random_state=520` 来进行随机化划分。
5. `for i, (train_idx, test_idx) in enumerate(kf)`: 使用 `enumerate` 函数迭代交叉验证器生成的每个折叠的索引和数据集分割。
6. `K_on += 1`: 更新交叉验证次数。
7. `X_train_split, X_test = [train_data_all[i] for i in train_idx], [train_data_all[i] for i in test_idx]`: 根据当前折叠的索引,从整体数据集 `train_data_all` 中提取训练集 `X_train_split` 和测试集 `X_test`。
8. `random.shuffle(X_train_split)`: 随机打乱训练集 `X_train_split` 的顺序。
9. `length = len(X_train_split)`: 获取训练集 `X_train_split` 的长度。
10. `X_train = X_train_split[0: int(length * 0.8)]`: 将训练集 `X_train_split` 的前 80% 部分作为训练数据。
11. `X_valid = X_train_split`: 将训练集 `X_train_split` 的全部作为验证数据。
以上是对提供的代码片段中的每行代码的简要解释。这段代码的目的是进行交叉验证,将整个数据集划分为多个折叠,并在每个折叠上进行模型训练和验证。具体的实现逻辑和功能可能需要查看其他相关代码来确定。
阅读全文