牛顿下山法代码MATLAB

时间: 2023-10-13 08:06:43 浏览: 150
下面是一个简单的MATLAB代码示例,实现牛顿下山法: ``` function [x_opt, f_opt, iter] = newton_downhill(f, df, ddf, x0, alpha, eps, max_iter) % f: 目标函数 % df: 目标函数的一阶导数 % ddf: 目标函数的二阶导数 % x0: 初始点 % alpha: 步长因子 % eps: 收敛阈值 % max_iter: 最大迭代次数 % 初始化 x = x0; iter = 1; while iter <= max_iter % 计算牛顿方向 d = -1 / ddf(x) * df(x); % 计算步长 t = 1; while f(x + t * d) > f(x) + alpha * t * df(x)' * d t = t / 2; end % 更新x x = x + t * d; % 检查收敛 if norm(df(x)) < eps break; end iter = iter + 1; end % 返回最优解和最优值 x_opt = x; f_opt = f(x); end ``` 注意,该代码只适用于一维函数。对于多维函数,需要相应地修改牛顿方向和步长的计算方式。
相关问题

牛顿下山法matlab代码

牛顿下山法是一种非线性优化算法,旨在寻找一个函数的最小值点。以下是一个使用Matlab编写的牛顿下山法的简单示例代码。 ```matlab function [x_opt, f_opt] = newton_method(f, grad, hess, x0, tol) % 牛顿下山法函数 % 输入参数: % f - 目标函数 % grad - 目标函数的梯度 % hess - 目标函数的Hessian矩阵 % x0 - 初始猜测点 % tol - 容忍误差 % 输出参数: % x_opt - 最优解 % f_opt - 最优解对应的目标函数值 x = x0; x_opt = x0; f_opt = f(x0); while abs(grad(x)) >= tol p = -hess(x) \ grad(x); % 计算牛顿下山法的方向 alpha = backtrack(f, grad, p, x); % 使用回溯直线搜索计算步长 x = x + alpha * p; % 迭代更新新的解 if f(x) < f_opt x_opt = x; f_opt = f(x); end end end function alpha = backtrack(f, grad, p, x) % 回溯直线搜索函数 % 输入参数: % f - 目标函数 % grad - 目标函数的梯度 % p - 下降方向 % x - 当前点 % 输出参数: % alpha - 步长 alpha = 1; % 初始步长 c = 0.5; % 回溯直线搜索参数 rho = 0.5; % 回溯直线搜索参数 while f(x + alpha*p) > f(x) + c * alpha * grad(x)' * p alpha = rho * alpha; % 更新步长 end end ``` 上述代码中,`f`是目标函数,`grad`是目标函数的梯度,`hess`是目标函数的Hessian矩阵,`x0`是初始猜测点,`tol`是容忍误差。函数`newton_method`使用牛顿下山法迭代更新解,并返回最优解`x_opt`和最优解对应的目标函数值`f_opt`。函数`backtrack`使用回溯直线搜索方法来计算步长`alpha`。

牛顿下山法matlab编程代码

牛顿下山法(Newton-Raphson method),也叫牛顿迭代法,是一种寻找函数零点的优化算法,它通过不断逼近函数图形的切线来逼近根的值。以下是使用MATLAB实现的基本步骤的示例代码: ```Matlab function [x] = newtonMethod(f, df, x0, tol, maxIter) % f: 待求解的函数 % df: 函数f的一阶导数 % x0: 初始猜测值 % tol: 容许的误差范围 % maxIter: 最大迭代次数 if nargin < 5 tol = 1e-6; end if nargin < 4 maxIter = 100; end iter = 0; while abs(f(x0)) > tol && iter < maxIter % 计算切线斜率 df_x0 = df(x0); % 更新估计值 x1 = x0 - f(x0) / df_x0; x0 = x1; iter = iter + 1; end if iter >= maxIter warning('Maximum number of iterations reached without convergence.'); end % 返回最终结果或无解 if abs(f(x0)) <= tol x = x0; else x = NaN; % 表示未收敛 end ``` 在这个函数里,`f`是要找零点的函数,`df`是它的导数函数,`x0`是初始猜测值,`tol`是允许的误差阈值,`maxIter`是最大迭代次数。运行这个函数,如果找到满足条件的根,则返回该根;否则返回`NaN`表示未收敛。
阅读全文

相关推荐

最新推荐

recommend-type

牛顿法,牛顿下山,割线法,高斯消去法,列主元高斯消去,LU分解法matlab源程序

牛顿法、牛顿下山法、割线法、LU分解法在MATLAB中的实现 本实验报告的主要目的是掌握用 Newton 迭代法、简化牛顿法、牛顿下山法和割线法求解方程,并用 MATLAB 实现算法。在实验中,我们使用四种方法来求解方程 f(x...
recommend-type

yolov5s nnie.zip

yolov5s nnieyolov5-nnieyolov5s nnieYOLOv5 pytorch -> onnx -> caffe -> .wk 1、模型是yolov5s,将focus层替换成stride为2的卷积层。reshape和permute层也做了调整。具体的修改过程可以参考这个大佬的文章https://blog.csdn.net/tangshopping/article/details/1100386052、模型是在hi3559av100上跑的,mapper版本是1.2。3、用法mkdir buildcd buildcmake -DCMAKE_TOOLCHAIN_FILE=../hi3559.toolchain.cmake ..make -j4./yolo_nnie参考https://blog.csdn.net/tangshopping/article/details/110038605watermelooon/nnie_yolohttps://github.com/ultralytics/yolov5https://githu
recommend-type

基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明

基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明,本资源中的源码都是经过本地编译过可运行的,评审分达到98分,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。 基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明,本基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明资源中的源码都是经过本地编译过可运行的,评审分达到98分,基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。 本资源中的源码都是经过本地编译过可运行的,评审分达到98分,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。本资源中的源码都是经过本地编译过可运行的,评审分达到98分
recommend-type

使用Java写的一个简易的贪吃蛇小游戏.zip

使用Java写的一个简易的贪吃蛇小游戏.zip数据
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依