elif args.model == 'basic': output = model(imgL,imgR) output = torch.squeeze(output,1) loss = F.smooth_l1_loss(output[mask], disp_true[mask], size_average=True) loss.backward() optimizer.step() return loss.data什么意思
时间: 2024-01-28 08:03:09 浏览: 137
这段代码也是一个深度学习模型的训练过程。该模型被称为“basic”,它接收两个图像作为输入,并输出一个大小相同的特征图。loss函数的计算是基于这个特征图和ground truth深度图之间的差异。其中,output代表模型输出的特征图,用来计算loss。smooth_l1_loss是一种常用的回归损失函数,它在计算误差时会对异常值进行鲁棒性处理,避免异常值对模型产生过大影响。mask是一个二值掩码,用于指示哪些像素点需要计算loss。disp_true是ground truth深度图。在计算完loss之后,通过loss.backward()计算出梯度信息,再通过optimizer.step()更新模型参数。最后返回loss.data表示本次训练的loss值。
相关问题
for (img1_file, img2_file) in tqdm(img_pairs): img1 = np.array(imread(img1_file)) img2 = np.array(imread(img2_file)) if args.arch == 'StrainNet_l' and img1.ndim == 3: img1 = img1[:,:,1] img2 = img2[:,:,1] img1 = img1/255 img2 = img2/255 if img1.ndim == 2: img1 = img1[np.newaxis, ...] img2 = img2[np.newaxis, ...] img1 = img1[np.newaxis, ...] img2 = img2[np.newaxis, ...] img1 = torch.from_numpy(img1).float() img2 = torch.from_numpy(img2).float() if args.arch == 'StrainNet_h' or args.arch == 'StrainNet_f': img1 = torch.cat([img1,img1,img1],1) img2 = torch.cat([img2,img2,img2],1) input_var = torch.cat([img1,img2],1) elif img1.ndim == 3: img1 = np.transpose(img1, (2, 0, 1)) img2 = np.transpose(img2, (2, 0, 1)) img1 = torch.from_numpy(img1).float() img2 = torch.from_numpy(img2).float() input_var = torch.cat([img1, img2]).unsqueeze(0) # compute output input_var = input_var.to(device) output = model(input_var) if args.arch == 'StrainNet_h' or args.arch == 'StrainNet_l': output = torch.nn.functional.interpolate(input=output, scale_factor=2, mode='bilinear') output_to_write = output.data.cpu() output_to_write = output_to_write.numpy() disp_x = output_to_write[0,0,:,:] disp_x = - disp_x * args.div_flow + 1 disp_y = output_to_write[0,1,:,:] disp_y = - disp_y * args.div_flow + 1 filenamex = save_path/'{}{}'.format(img1_file.stem[:-1], '_disp_x') filenamey = save_path/'{}{}'.format(img1_file.stem[:-1], '_disp_y') np.savetxt(filenamex + '.csv', disp_x,delimiter=',') np.savetxt(filenamey + '.csv', disp_y,delimiter=',')
这代码是一个图像处理的代码片段,它的作用是对一对图像进行处理并输出结果。
首先,代码使用imread函数读取两个图像文件(img1_file和img2_file),然后将其转换为numpy数组(img1和img2)。
接下来,根据参数args.arch的值和图像的维度,对图像进行一些预处理操作。如果args.arch等于'StrainNet_l'并且图像是三维的,则只保留第二个通道。然后将图像的像素值归一化到0到1之间。
然后,根据图像的维度进行不同的处理。如果图像是二维的,则添加一个额外的维度,并将其转换为Tensor类型。如果args.arch等于'StrainNet_h'或'StrainNet_f',则将图像在通道维度上进行复制。最后,将两个图像在通道维度上拼接起来,得到input_var。
如果图像是三维的,则对其进行转置操作,并转换为Tensor类型。然后将两个图像拼接起来,并在第0维度上添加一个额外的维度,得到input_var。
接下来,将input_var传入模型(model)进行计算得到输出(output)。如果args.arch等于'StrainNet_h'或'StrainNet_l',则对输出进行双线性插值操作。
然后,将输出转移到CPU上,并转换为numpy数组(output_to_write)。根据需要,将输出进行一些后处理操作,最终得到disp_x和disp_y。
最后,将disp_x和disp_y保存为CSV文件,文件名根据输入图像的文件名生成,并保存在save_path路径下。
以上就是这段代码的功能和流程。如果有其他问题,请随时提问!
import torch import torch.nn as nn import torch.optim as optim import numpy as np 定义基本循环神经网络模型 class RNNModel(nn.Module): def init(self, rnn_type, input_size, hidden_size, output_size, num_layers=1): super(RNNModel, self).init() self.rnn_type = rnn_type self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.encoder = nn.Embedding(input_size, hidden_size) if rnn_type == 'RNN': self.rnn = nn.RNN(hidden_size, hidden_size, num_layers) elif rnn_type == 'GRU': self.rnn = nn.GRU(hidden_size, hidden_size, num_layers) self.decoder = nn.Linear(hidden_size, output_size) def forward(self, input, hidden): input = self.encoder(input) output, hidden = self.rnn(input, hidden) output = output.view(-1, self.hidden_size) output = self.decoder(output) return output, hidden def init_hidden(self, batch_size): if self.rnn_type == 'RNN': return torch.zeros(self.num_layers, batch_size, self.hidden_size) elif self.rnn_type == 'GRU': return torch.zeros(self.num_layers, batch_size, self.hidden_size) 定义数据集 with open('汉语音节表.txt', encoding='utf-8') as f: chars = f.readline() chars = list(chars) idx_to_char = list(set(chars)) char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)]) corpus_indices = [char_to_idx[char] for char in chars] 定义超参数 input_size = len(idx_to_char) hidden_size = 256 output_size = len(idx_to_char) num_layers = 1 batch_size = 32 num_steps = 5 learning_rate = 0.01 num_epochs = 100 定义模型、损失函数和优化器 model = RNNModel('RNN', input_size, hidden_size, output_size, num_layers) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) 训练模型 for epoch in range(num_epochs): model.train() hidden = model.init_hidden(batch_size) loss = 0 for X, Y in data_iter_consecutive(corpus_indices, batch_size, num_steps): optimizer.zero_grad() hidden = hidden.detach() output, hidden = model(X, hidden) loss = criterion(output, Y.view(-1)) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() if epoch % 10 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")请正确缩进代码
下面是正确缩进的代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 定义基本循环神经网络模型
class RNNModel(nn.Module):
def __init__(self, rnn_type, input_size, hidden_size, output_size, num_layers=1):
super(RNNModel, self).__init__()
self.rnn_type = rnn_type
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.num_layers = num_layers
self.encoder = nn.Embedding(input_size, hidden_size)
if rnn_type == 'RNN':
self.rnn = nn.RNN(hidden_size, hidden_size, num_layers)
elif rnn_type == 'GRU':
self.rnn = nn.GRU(hidden_size, hidden_size, num_layers)
self.decoder = nn.Linear(hidden_size, output_size)
def forward(self, input, hidden):
input = self.encoder(input)
output, hidden = self.rnn(input, hidden)
output = output.view(-1, self.hidden_size)
output = self.decoder(output)
return output, hidden
def init_hidden(self, batch_size):
if self.rnn_type == 'RNN':
return torch.zeros(self.num_layers, batch_size, self.hidden_size)
elif self.rnn_type == 'GRU':
return torch.zeros(self.num_layers, batch_size, self.hidden_size)
# 定义数据集
with open('汉语音节表.txt', encoding='utf-8') as f:
chars = f.readline()
chars = list(chars)
idx_to_char = list(set(chars))
char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)])
corpus_indices = [char_to_idx[char] for char in chars]
# 定义超参数
input_size = len(idx_to_char)
hidden_size = 256
output_size = len(idx_to_char)
num_layers = 1
batch_size = 32
num_steps = 5
learning_rate = 0.01
num_epochs = 100
# 定义模型、损失函数和优化器
model = RNNModel('RNN', input_size, hidden_size, output_size, num_layers)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
model.train()
hidden = model.init_hidden(batch_size)
loss = 0
for X, Y in data_iter_consecutive(corpus_indices, batch_size, num_steps):
optimizer.zero_grad()
hidden = hidden.detach()
output, hidden = model(X, hidden)
loss = criterion(output, Y.view(-1))
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
if epoch % 10 == 0:
print(f"Epoch {epoch}, Loss: {loss.item()}")
```
阅读全文