datagen.flow_from_directory()参数
时间: 2023-09-26 20:08:24 浏览: 139
`flow_from_directory()` 是 Keras 中 ImageDataGenerator 类的一个方法,用于从目录中读取图像数据并生成批次的数据。
下面是该函数的参数:
- `directory`:包含图像的目录路径。
- `target_size`:调整图像的大小为 `(height, width)` 形式的元组。
- `color_mode`:图像的颜色模式,可以是 "grayscale"(灰度)、"rgb" 或 "rgba"。
- `classes`:可选参数,用于指定不同类型的子目录的类别标签。
- `class_mode`:如何标记每个图像的类别,可以是 "categorical"(分类)、"binary"(二分类)或 "sparse"(稀疏分类)。
- `batch_size`:生成器每个批次包含的图像数量。
- `shuffle`:是否打乱图像的顺序。
- `seed`:可选参数,用于打乱数据时的随机种子。
- `save_to_dir`:可选参数,用于保存生成批次的图像。
- `save_prefix`:可选参数,保存图像时使用的前缀。
- `save_format`:可选参数,保存图像时使用的格式。
相关问题
train_datagen.flow_from_directory 参数解析
`train_datagen.flow_from_directory` 函数是从目录中读取图像数据并进行预处理的流式生成器。
该函数的参数如下:
- `directory`: 字符串,数据路径,其中包含子目录的路径。子目录的名称将被用作分类标签。
- `target_size`: 元组,整数元组 `(height, width)`,表示调整所有图像的大小。
- `color_mode`: 字符串,指定图像是否转换为灰度图像。默认为 `"rgb"`。
- `classes`: 可选参数,用于标识子目录的子集的可选子集列表。默认为 `None`,表示使用所有子目录(自动从子目录的名称生成类别标签)。
- `class_mode`: 字符串,指定分类标签的类型。可以是 `"categorical"`(默认值),表示每个标签是一个独热编码的向量;或者是 `"binary"`,表示二进制标签;或者是 `"sparse"`,表示整数标签。
- `batch_size`: 整数,生成的批次大小。
- `shuffle`: 布尔值,是否在每个 epoch 之后打乱数据。默认为 `True`。
- `seed`: 整数,随机数种子。
- `subset`: 字符串,数据集子集,可以是 `"training"` 或 `"validation"`。
- `interpolation`: 字符串,当调整大小时使用的插值方法。默认为 `"nearest"`。
- `follow_links`: 布尔值,是否遵循符号链接。默认为 `False`。
例如,以下代码将数据集中的图像大小调整为 (224, 224),将它们转换为 RGB 格式,将它们分为训练集和验证集两个子集,并将它们作为输入传递给模型:
```python
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1./255, validation_split=0.2)
train_generator = train_datagen.flow_from_directory(
directory='path/to/dataset',
target_size=(224, 224),
color_mode='rgb',
batch_size=32,
class_mode='categorical',
shuffle=True,
seed=42,
subset='training'
)
validation_generator = train_datagen.flow_from_directory(
directory='path/to/dataset',
target_size=(224, 224),
color_mode='rgb',
batch_size=32,
class_mode='categorical',
shuffle=True,
seed=42,
subset='validation'
)
```
其中,`rescale=1./255` 表示对像素值进行缩放,将像素值从 [0, 255] 范围缩放到 [0, 1] 范围。`validation_split=0.2` 表示将 20% 的数据用作验证集,`subset='training'` 和 `subset='validation'` 分别指定生成训练集和验证集。
datagen.flow与datagen.flow_from_directory在参数设置上有什么区别
`datagen.flow`和`datagen.flow_from_directory`在参数设置上有一些区别。
对于`datagen.flow`方法,主要参数包括:
- `x`:输入的图像数据,可以是一个numpy数组或一个numpy数组的列表。如果是列表,则每个元素应该是一个numpy数组,代表一个图像样本。
- `y`:输入的标签数据,可以是一个numpy数组或一个numpy数组的列表。如果是列表,则每个元素应该是一个numpy数组,代表一个标签样本。
- `batch_size`:每个批次的样本数量。
- `shuffle`:是否在每个epoch之后重新洗牌数据。
- `seed`:用于随机数生成的种子。
对于`datagen.flow_from_directory`方法,主要参数包括:
- `directory`:包含图像数据的目录路径。
- `target_size`:将图像调整为指定的大小。
- `batch_size`:每个批次的样本数量。
- `class_mode`:决定返回的标签类型,如"binary"、"categorical"、"sparse"等。
- `shuffle`:是否在每个epoch之后重新洗牌数据。
- `seed`:用于随机数生成的种子。
这些参数的具体设置可以根据您的需求和数据集的特点进行调整。
希望这个回答能够帮助到您,如果还有其他问题,请随时提问。
阅读全文