train_datagen.flow_from_directory 中batch_size为16,而model.fit(training_set, epochs=epochs, batch_size=32)会有什么影响
时间: 2023-11-02 11:05:52 浏览: 65
`train_datagen.flow_from_directory` 的 `batch_size` 参数指定了生成器每次生成的样本数。如果将 `batch_size` 设置为 16,那么每次生成器会生成 16 个样本。
`model.fit` 中的 `batch_size` 参数指定了模型在每次训练中使用的样本数。如果将 `batch_size` 设置为 32,那么模型每次训练会使用 32 个样本。这意味着每个 Epoch 中会有更多的参数更新,但也会导致训练时间变长。
在这种情况下,如果将 `batch_size` 设置为 32,那么每次训练会使用更多的样本,但是由于每次生成器只生成 16 个样本,因此训练过程中会有很多次重复使用相同的样本。这可能会影响模型的泛化能力,因为模型只能学习到有限的样本。因此,建议将 `batch_size` 保持一致,以确保训练过程中每个 Epoch 中使用的是不同的样本。
相关问题
卷积层过滤器大小或步幅是什么model=unet() epochs = 1 batch_size = 40 learning_rate = 0.001train_vol_generator = train_datagen.flow_from_directory( train_vol_dir, target_size=(256, 256), batch_size=batch_size, class_mode=None, seed=42 )
在上述代码中,卷积层的过滤器大小和步幅是通过模型的架构来定义的。在这里,你使用了一个名为 "unet" 的模型,但是我无法确定该模型的具体架构,因此无法提供关于卷积层参数的详细信息。
一般来说,卷积层的过滤器大小和步幅是通过参数来设置的。在 TensorFlow 中,您可以使用 Conv2D 层来定义卷积层,并通过设置 filters、kernel_size、strides 等参数来指定过滤器数量、过滤器大小和步幅。例如,以下代码定义了一个具有 32 个 3x3 过滤器和步幅为 1 的卷积层:
```
from tensorflow.keras.layers import Conv2D
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), activation='relu', input_shape=(256, 256, 3)))
```
在这里,filters 参数指定了过滤器数量,kernel_size 参数指定了过滤器大小,strides 参数指定了步幅。您可以根据您的需求调整这些参数。
from keras import applications from keras.preprocessing.image import ImageDataGenerator from keras import optimizers from keras.models import Sequential, Model from keras.layers import Dropout, Flatten, Dense img_width, img_height = 256, 256 batch_size = 16 epochs = 50 train_data_dir = 'C:/Users/Z-/Desktop/kaggle/train' validation_data_dir = 'C:/Users/Z-/Desktop/kaggle/test1' OUT_CATAGORIES = 1 nb_train_samples = 2000 nb_validation_samples = 100 base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(img_width, img_height, 3)) base_model.summary() for layer in base_model.layers[:15]: layer.trainable = False top_model = Sequential() top_model.add(Flatten(input_shape=base_model.output_shape[1:])) top_model.add(Dense(256, activation='relu')) top_model.add(Dropout(0.5)) top_model.add(Dense(OUT_CATAGORIES, activation='sigmoid')) model = Model(inputs=base_model.input, outputs=top_model(base_model.output)) model.compile(loss='binary_crossentropy', optimizer=optimizers.SGD(learning_rate=0.0001, momentum=0.9), metrics=['accuracy']) train_datagen = ImageDataGenerator(rescale=1. / 255, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary', shuffle=False ) model.fit_generator( train_generator, steps_per_epoch=nb_train_samples / batch_size, epochs=epochs, validation_data=validation_generator, validation_steps=nb_validation_samples / batch_size, verbose=2, workers=12 ) score = model.evaluate_generator(validation_generator, nb_validation_samples / batch_size) scores = model.predict_generator(validation_generator, nb_validation_samples / batch_size)看看这段代码有什么错误
在段代码中,有一些错误和需要注意的地方:
1. `img_width` 和 `img_height` 变量没有被定义,需要先定义它们的值。
2. `OUT_CATAGORIES` 变量也没有被定义,需要给它赋值。
3. 在使用 `train_generator` 和 `validation_generator` 时,`steps_per_epoch` 和 `validation_steps` 应该为整数值,而不是浮点数。可以使用 `//` 运算符来进行整除操作。
4. 在评估模型的性能时,`evaluate_generator` 和 `predict_generator` 方法的参数应该是整数值,而不是浮点数。可以使用 `int()` 函数来将浮点数转换为整数。
下面是修改后的代码:
```python
from keras import applications
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
from keras.models import Sequential, Model
from keras.layers import Dropout, Flatten, Dense
img_width, img_height = 256, 256
batch_size = 16
epochs = 50
train_data_dir = 'C:/Users/Z-/Desktop/kaggle/train'
validation_data_dir = 'C:/Users/Z-/Desktop/kaggle/test1'
OUT_CATAGORIES = 1
nb_train_samples = 2000
nb_validation_samples = 100
base_model = applications.VGG16(weights='imagenet',
include_top=False,
input_shape=(img_width, img_height, 3))
base_model.summary()
for layer in base_model.layers[:15]:
layer.trainable = False
top_model = Sequential()
top_model.add(Flatten(input_shape=base_model.output_shape[1:]))
top_model.add(Dense(256, activation='relu'))
top_model.add(Dropout(0.5))
top_model.add(Dense(OUT_CATAGORIES, activation='sigmoid'))
model = Model(inputs=base_model.input,
outputs=top_model(base_model.output))
model.compile(loss='binary_crossentropy',
optimizer=optimizers.SGD(learning_rate=0.0001, momentum=0.9),
metrics=['accuracy'])
train_datagen = ImageDataGenerator(rescale=1. / 255,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary',
shuffle=False)
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size,
verbose=2,
workers=12)
score = model.evaluate_generator(validation_generator, int(nb_validation_samples / batch_size))
scores = model.predict_generator(validation_generator, int(nb_validation_samples / batch_size))
```
阅读全文