python实现ABAC:主体、客体和环境属性集合各有10个元素,每一个策略中主体、客体和环境相关的规则由3-5个属性的布尔表达式随机生成,每个用户请求中也是随机生成3-5个生成策略与请求各10000个,记录决策结果
时间: 2024-02-06 22:09:06 浏览: 62
以下是一个简单的 Python 实现 ABAC 的例子,其中主体、客体和环境属性集合各有 10 个元素,每个策略中主体、客体和环境相关的规则由 3-5 个属性的布尔表达式随机生成,每个用户请求中也是随机生成 3-5 个生成策略与请求各10000个,记录决策结果:
```python
import random
class Attribute:
def __init__(self, name):
self.name = name
self.value = False
def set_value(self, value):
self.value = value
def get_value(self):
return self.value
class Subject:
def __init__(self):
self.attributes = [Attribute("attr" + str(i + 1)) for i in range(10)]
def get_attribute(self, name):
for attribute in self.attributes:
if attribute.name == name:
return attribute.get_value()
return None
def set_attribute(self, name, value):
for attribute in self.attributes:
if attribute.name == name:
attribute.set_value(value)
class Object:
def __init__(self):
self.attributes = [Attribute("attr" + str(i + 1)) for i in range(10)]
def get_attribute(self, name):
for attribute in self.attributes:
if attribute.name == name:
return attribute.get_value()
return None
def set_attribute(self, name, value):
for attribute in self.attributes:
if attribute.name == name:
attribute.set_value(value)
class Environment:
def __init__(self):
self.attributes = [Attribute("attr" + str(i + 1)) for i in range(10)]
def get_attribute(self, name):
for attribute in self.attributes:
if attribute.name == name:
return attribute.get_value()
return None
def set_attribute(self, name, value):
for attribute in self.attributes:
if attribute.name == name:
attribute.set_value(value)
class Policy:
def __init__(self):
self.subject_rules = []
self.object_rules = []
self.environment_rules = []
for i in range(random.randint(3, 5)):
attribute_name = "attr" + str(random.randint(1, 10))
value = bool(random.getrandbits(1))
self.subject_rules.append((attribute_name, value))
for i in range(random.randint(3, 5)):
attribute_name = "attr" + str(random.randint(1, 10))
value = bool(random.getrandbits(1))
self.object_rules.append((attribute_name, value))
for i in range(random.randint(3, 5)):
attribute_name = "attr" + str(random.randint(1, 10))
value = bool(random.getrandbits(1))
self.environment_rules.append((attribute_name, value))
def evaluate(self, subject, object, environment):
for rule in self.subject_rules:
attribute_name, value = rule
if subject.get_attribute(attribute_name) != value:
return False
for rule in self.object_rules:
attribute_name, value = rule
if object.get_attribute(attribute_name) != value:
return False
for rule in self.environment_rules:
attribute_name, value = rule
if environment.get_attribute(attribute_name) != value:
return False
return True
class Request:
def __init__(self):
self.policies = []
self.subject = Subject()
self.object = Object()
self.environment = Environment()
for i in range(10000):
self.policies.append(Policy())
for attribute in self.subject.attributes:
attribute.set_value(bool(random.getrandbits(1)))
for attribute in self.object.attributes:
attribute.set_value(bool(random.getrandbits(1)))
for attribute in self.environment.attributes:
attribute.set_value(bool(random.getrandbits(1)))
def make_decision(self):
decisions = []
for policy in self.policies:
decision = policy.evaluate(self.subject, self.object, self.environment)
decisions.append(decision)
return decisions
```
在这个例子中,我们定义了 `Attribute`、`Subject`、`Object`、`Environment`、`Policy` 和 `Request` 类。`Attribute` 类表示一个属性,具有名称和值两个属性。`Subject`、`Object` 和 `Environment` 类分别表示主体、客体和环境,每个对象都包含 10 个 `Attribute` 对象。`Policy` 类表示一个策略,包含了主体、客体和环境相关的规则。`Request` 类表示一个用户请求,包含了一组策略和一组随机生成的主体、客体和环境属性。
在 `Policy` 类中,我们使用 `random` 模块随机生成主体、客体和环境相关的规则。每个规则包含了一个属性名称和一个布尔值,表示该属性的值是否需要与规则匹配。在 `evaluate` 方法中,我们遍历主体、客体和环境相关的规则,检查它们是否与相应的属性值匹配。如果所有规则都匹配,则返回 `True`,否则返回 `False`。
在 `Request` 类中,我们使用 `random` 模块随机生成一组策略和一组主体、客体和环境属性。在 `make_decision` 方法中,我们遍历策略列表,并对每个策略调用 `evaluate` 方法来计算决策结果。最后,我们将所有决策结果存储在一个列表中,并将其返回。
下面是一个简单的示例,说明如何使用这个实现来进行 ABAC 决策:
```python
# 创建一个请求对象
request = Request()
# 获取所有决策结果
decisions = request.make_decision()
# 输出决策结果
print(decisions)
```
输出结果应该是一个包含 10000 个布尔值的列表,每个值表示相应策略是否被允许。
阅读全文